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Abstract

I examine how recommender systems have influenced the music industry and shaped
music production. Using a structural model of the recorded music industry, I analyze
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I estimate a fixed cost of $170,000 for songs that enter Spotify’s Top 200. Counter-
factual analysis shows that with randomized recommendations, fewer songs would
enter the market, reducing consumer welfare by 4%. The songs that do enter would
be 33 seconds longer on average and more heterogeneously long. Popularity-based
recommendations that do not account for individual taste would generate a superstar
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overall variety in music, they have also enabled additional entry and increased con-
sumer welfare.
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1 Introduction

Recommender systems, which are designed to match consumers with products they will
like, are now the curators of our digital lives, influencing everything from the products
we buy to the music we listen to. Such systems are prevalent in many online market-
places, including Amazon, TikTok, and Netflix, and they have become a key feature of
the digital music industry.1 Music streaming platforms, on which consumers can access a
vast catalog of music for a fixed monthly fee (or ads), have become the primary way con-
sumers access music, with streaming accounting for 84% of the recordedmusic industry’s
$17.7bn revenue in 2024.2 These platforms use recommender systems to generate playlists
that surface music to users, and they are where users discover the majority of new music.
I investigate how these recommender systems affect the music industry, and how they
have shaped the sound of music since their introduction.

Recommender systems have generated significant regulatory and policy interest in re-
cent years. Antitrust authorities have begun to investigate the effects of these systems on
competition, and several pieces of legislation have been passed to regulate them. Exam-
ples include the Digital Markets Act and Digital Services Act in the EU and the US De-
partment of Justice litigation against RealPage for algorithmic pricing collusion.3 These
systems also raise questions about artistic diversity and the long-term cultural impact of
algorithmically driven music and cultural production. 4 This paper proposes a quantita-
tive framework to analyze the effects of these systems on the music industry and estimate
the welfare effects of these systems on consumers.

Recommender systems are a form of advertising for content on digital platforms, but
unlike typical advertising, the producer does not actually purchase the advertisement.5

These systems come with a number of economic trade-offs. Consumers can more easily
find music they may like and discover new artists, and artists can reach a wider audience
than ever before (Aridor and Gonçalves 2022). At the same time, platforms can use these
algorithms to steer consumers toward profit-maximizing products, rather than products
that consumers actually prefer (Reimers and Waldfogel 2023). These systems may also
have inherent biases, resulting in recommendations that are not representative of the pop-
ulation or that are harmful to certain groups (Melchiorre et al. 2021).

1. Amazon, TikTok, Netflix.
2. RIAA 2024 Year-End Music Industry Revenue Report.
3. Digital Markets Act, Digital Services Act, US Department of Justice, August 2024.
4. New Yorker, ”Drowning in Slop.”
5. Platforms do have sponsored recommendations, but Spotify, the platform I study, did not introduce

these sponsored recommendations until after the timeframe of my data.
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I focus on the equilibrium effects of these systems—whereby producers respond to
the recommender system by changing their product design—and how these changes af-
fect consumer welfare. To evaluate these effects, I build a structural model of the recorded
music industry to estimate the supply of and demand for recorded music on Spotify. This
model has three sets of agents: consumers, Spotify, and rightsholders (producers). Con-
sumers receive songs from Spotify’s recommender system and choose whether to listen
to them during their streaming session under a logit framework. Spotify’s recommender
system computes the probability that a consumer will listen to a particular song, based
on the song’s characteristics and the consumer’s preferences, and delivers the song to the
consumer. Rightsholders, such as record labels, decidewhether to release songs to Spotify
given the demand for the song, which is a function of the probability the recommender
system surfaces the song and the consumer listens to it. They are forward-looking agents,
looking to maximize expected profit, so they consider the future revenue the song gener-
ates when deciding whether to release it. They face fixed costs drawn from a lognormal
distribution, whose parameters are a function of song characteristics and label fixed ef-
fects. In an oblivious equilibrium, rightsholders release songs so long as the expected
revenue exceeds the estimated fixed cost of release.

To estimate thismodel, I use three sources of data: theMusic Streaming SessionDataset
(MSSD), data scraped from Spotify Charts, and the Spotify API. The MSSD contains 160m
consumer-level streaming sessions from July to September 2018. These streaming sessions
include song characteristics, consumer characteristics, length of the listen (binned), and
whether they got the song from a recommender system or other sources. Spotify Charts
is a website reporting the daily top 200 songs on Spotify for every country in which they
operate. It also includes stream counts and the Spotify ID for each song on the chart. The
Spotify API allows me to query the song characteristics of each song on Spotify Charts.

I find that song characteristics, such as length, tempo, and danceability, have changed
significantly since 2010. Using reduced-form analysis, I estimate that the introduction
of streaming services and recommender systems correlate to a 40-second decrease in the
average length of songs on Billboard’s Hot 100. Music industry executives have also con-
firmed that they have changed the kind ofmusic they release to better fit the recommender
system’s objectives (e.g., shorter, more danceable songs).

Using my structural model, I estimate a gap between consumer demand and recom-
mender systems, driven by differences in their preferences, and find that producers re-
spond to this gap by targeting the recommenders’ objectives jointly with consumer pref-
erences. For example, although consumers are likelier to listen to longer songs, the rec-
ommender system is likelier to surface shorter songs and producers respond by releasing
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shorter songs. I also estimate the fixed cost of releasing a song into the Top 200 on Spotify
at $170,000.

My counterfactual analysis focuses on changing Spotify’s recommender system to see
how it has affected song characteristics. I first impose random recommendations, as a
proxy for no recommendations, or a naive consumer search process. I find that in the
absence of recommender systems, songs are on average 33 seconds longer, more hetero-
geneous, and less profitable. As a result, fewer songs would be released, and consumer
welfare is 4% lower than in the status quo. I also consider a recommender system based
exclusively on song popularity, as a proxy for a ban on personalized recommendations,
or a simulation of the digital music storefronts of the 2000s (e.g., iTunes). Such a recom-
mender systemwould generate a superstar effect, which increases gross profitmargins for
songs that enter the market to 40%, but reduces consumer welfare by 13%. In this coun-
terfactual, songs are 12 seconds shorter on average, and more danceable songs are likely
to be released. This suggests that Spotify’s recommender system has indeed changed the
sound of music, and that while these changes have reduced the variety of music available
to consumers, they have also increased both the quantity of songs and consumer welfare.

These results have significant economic and policy implications for the music industry
and digital platforms more broadly. Economically, I find that recommender systems have
reshaped the music production landscape by influencing not only consumer choices but
also the creative decisions of artists and record labels. This shift has led to increased effi-
ciency in matching consumer preferences with musical output, which potentially drives
higher revenues and more targeted content creation. From a policy perspective, this re-
search suggests that recommender systems may warrant regulatory scrutiny. Although
the study indicates overall positive effects on consumer welfare, these systems can also
drive concentration on digital platforms and in the music industry. Policymakers may
need to balance the benefits of increased efficiency and consumer satisfaction against
concerns about market power, artistic freedom, and cultural diversity. Furthermore, the
study’s methodology could inform future antitrust analyses and policy decisions regard-
ing digital platforms and their recommendation algorithms across various industries.

The paper proceeds as follows. Subsection 1.1 places this paper in the context of
the literature and identifies the contribution. Section 2 provides the background for the
recorded music industry, describes the industry structure, including music characteris-
tics, and provides reduced-form analysis of how technological changes have affected song
characteristics in order to motivate the structural model. Section 3 describes the data and
provides some descriptive analysis. Section 4 details the structuralmodel ofmusic stream-
ing and describes the oblivious equilibrium in which rightsholders release music. Section
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5 explains the estimation strategy. Section 6 provides and discusses the estimates of de-
mand parameters, recommender system parameters, and fixed costs. Section 7 conducts
several counterfactual analyses by modifying the recommender system to observe how
equilibrium song releases change, and Section 8 concludes.

1.1 Literature Review

I contribute to multiple strands of the economics literature. First, I contribute to research
on the economics of music by developing a structural model of the music streaming in-
dustry.

Aguiar, Waldfogel, and Waldfogel (2021) use reduced-form analysis to identify bias
in the rankings of songs on Spotify’s New Music Friday playlist. They find that higher-
ranked songs tend to perform better after placement on the playlist, which suggests that
curators are looking tomaximize streams for their playlist. They also find that the curators
of this playlist tend to favor songs by women and from independent labels, because they
rank higher than their post-placement performancewould suggest. Benner andWaldfogel
(2016) use a difference-in-differences design to estimate how the digitization of recorded
music has affected the release strategy of record labels. They find that, after digitization,
major labels both release fewer albums and become more reliant on previously successful
artists; conversely, independent labels release more albums. Aguiar and Waldfogel (2021)
estimate the effect of including a song on a Spotify playlist using a regression discontinuity
and instrumental variable design.

This paper also builds onAguiar andWaldfogel (2018), whodevelop a structuralmodel
of the digital music industry. They model consumer demand for digital music across
countries and estimate the fixed cost of entry under three scenarios: perfect quality fore-
sight, no quality foresight, and imperfect quality foresight, in which firms know their
songs’ quality with some forecasting error. They estimate this fixed cost as the expected
revenue of the worst-performing song and find that the fixed cost is higher when right-
sholders have no quality foresight. Their counterfactual analysis finds that tripling the
number of songs available to consumers under imperfect foresight adds nearly 20 times
as much consumer surplus as doing so under perfect foresight. I extend this model to
the music streaming industry by modifying the choice structure to reflect the streaming
industry, incorporating a recommender system in the model, and introducing forward-
looking rightsholders. I adjust the fixed cost model to estimate costs from a lognormal
distribution, rather than assuming that the fixed cost is the expected revenue of the worst-
performing song.
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This paper also incorporates the effects of changing business models on labels and
artists. Most services use a pro rata model (paying artists by share of total streams), which
some argue unfairly favors superstar heavy rotation. Bergantiños and Moreno-Ternero
(2025) provides game-theoretic foundations for both the pro rata system and an alternative
“user-centric” payout, where each user’s fee is split only among the artists they personally
listen to. They explore hybrid models that lie between these two extremes, aiming to bet-
ter align incentives of platforms, fans, and musicians. I explore a similar set of business
models, focusing instead on the per-subscriber fee and the per-play fee, and how these
models affect song characteristics. This line of research speaks to emerging industry ex-
periments with user-centric payments and other schemes tomake streaming incomemore
equitable for diverse artists. Mortimer, Nosko, and Sorensen (2012) examine the impact of
file-sharing on sales of recorded music and on the demand for live concert performances.
They suggest that while file-sharing reduced album sales, it simultaneously increased de-
mand for concerts, especially for smaller artists.

Second, I contribute to a growing literature on recommender systems in economics.
Bourreau andGaudin (2022) use aHotellingmodel ofmusic listeningwith a recommender
system and a digital platform that hosts both songs. They find that the platform uses the
recommender system to drive consumers to songs with lower royalty rates, even if they
are further from the consumer’s ideal song. Aridor and Gonçalves (2022) similarly embed
recommender systems in a theoretical model of digital platforms. They focus on the effect
of these systemswhen the platform competes with its sellers (i.e., acts as a hybrid), finding
that the platform uses the recommender system to steer consumers toward its own prod-
ucts, and that this can reduce consumer welfare through the foreclosure of third-party
sellers. They also find that policy remedies are ambiguous in their effects, and that they
can reduce consumer welfare if they are not carefully designed. I extend these analyses
to an empirical model of the music industry and focuses on how these systems affect pro-
ducer product decisions. Melchiorre et al. (2021) introduce a large-scale dataset of music
listening from Last.FM, a scrobbling service, and they use these data to investigate how
several algorithms may exhibit gender bias. They find that significant disparities exist in
recommendations with respect to certain gender groups. Aridor et al. (2023) conduct a
field experiment to determine whether recommender systems drive consumption, using
the recommendation service MovieLens. They find that recommender systems increase
consumption beyond just the exposure provided by the recommendation. They also in-
duce consumers to acquire additional information beyondwhat the recommendation pro-
vides. I apply their experiments to a structural model of the music industry.

The recommender system literature is divided on the impact of recommender sys-
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tems on consumer behavior. Fleder and Hosanagar (2009) demonstrate that popular rec-
ommendation engines (like collaborative filters) often exhibit a popularity bias that can
create a “rich get richer” feedback loop. Their models and simulations show that while
individuals may discover new products, recommender systems tend to steer users toward
the same set of popular items, which reduces aggregate sales diversity. In other words,
personalization can increase a single person’s variety but still amplify blockbusters over-
all. The authors highlight that small design tweaks could mitigate this effect, suggesting
platform designers can choose to promote diversity or concentrate attention depending
on their objectives. This has implications for market efficiency, as a biased recommender
might leave niche products (that some consumers would love) under-recommended, re-
sulting in missed matches. I test their hypothesis in the context of the music industry,
where recommender systems are now ubiquitous, using counterfactual analysis.

On the other hand, some empirical studies find that recommender systems can broaden
user horizons. For example, an analysis of iTunes social-network data by Hosanagar et
al. (2014) found that personalized music recommendations actually widened consumers’
exposure to new artists and fostered more overlap in what people listened to (counter to
“filter bubble” fears). Users who received tailored song suggestions shared more com-
mon interests and discovered music outside their initial comfort zone. This suggests rec-
ommender systems need not fragment audiences into isolated niches; withwell-calibrated
algorithms, they can increase total consumerwelfare by helping listeners find content they
enjoy but would not have found on their own. The net impact likely depends on the plat-
form’s goals (e.g., maximizing click-through vs. encouraging exploration) and the specific
design of the recommendation algorithm.

From an economics perspective, recommender systems can also affect competition
among firms and raise policy questions. Fletcher, Ormosi, and Savani (2023) identify sev-
eral systemic biases in recommendation algorithms – including popularity and incum-
bency bias (favoring well-known items), homogeneity bias (recommending very similar
content), and conformity bias (herding users toward mainstream choices). They argue
these biases may collectively harm market efficiency by skewing consumer choices and
making it harder for new or diverse providers to compete. Biased recommendations can
increase concentration, create higher entry barriers for new products, and reduce variety,
even if the platform is not intentionally anti-competitive. Such findings have led to calls
for more transparent and accountable algorithms. Proposed remedies include incorporat-
ing diversity or fairness objectives into recommendation criteria, or regulatory oversight
to ensure platforms aren’t locking in consumers unfairly. This intersection of algorithm
design and competition policy is a nascent but important area, recognizing that recom-
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mender systems now serve as key intermediaries in digital markets.
Finally, I contribute to the literature on digital platforms and intermediation. Recent

work in this area has focused on the role of platform exclusives and the possibility that
these platforms can bias search and recommendation results toward certain profit-maximizing
products, at the expense of consumer welfare. Lee (2013) constructs an empirical model of
the video game industry that focuses on the role of exclusive games on console platforms.
He finds that in the absence of exclusivity agreements, both console sales and consumer
welfare would be higher, but only the incumbent console manufacturer would benefit
from the absence of such agreements. I extend his model of game production to the music
industry, and build on his use of first-order Markov processes to model firm dynamics.
Reimers and Waldfogel (2023) develop an equilibrium framework to develop a workable
definition of platform bias. Their model posits a welfare frontier for platforms, which
is a weighted sum of consumer surplus and platform profits. They then test for biased
rankings (recommendations) on the platform by evaluating whether the platform is on
the frontier. They illustrate the approach by estimating the amount of bias in a structural
model of Amazon and Expedia and find that both platforms are off the frontier. Aguiar
and Waldfogel (2021) estimate the effect of including a song on a Spotify playlist using a
regression discontinuity and instrumental variable design. They find that being included
on a playlist significantly increases a song’s eventual streams. I build on this work by
incorporating algorithmic playlists in my model of the music industry.

2 Background and Industry Structure

2.1 Background

Technological changes have revolutionized the music industry over the last thirty years,
as evinced by their fall and rise in real revenue in figure 1.

The recorded music industry has undergone a dramatic transformation over the past
three decades. The rise of the internet in the 1990s facilitated widespread digital piracy
through services like Napster, leading to a significant decline in industry revenues. In
response, Apple launched the iTunes store in 2003, establishing a legal market for digital
music downloads and pioneering the unbundling of albums into individual tracks. The
pivotal shift occurred in the early 2010s with the mainstream adoption of streaming ser-
vices, led by Spotify. These platforms offered consumers on-demand access to vast music
catalogs for a subscription fee, effectively combating piracy and reversing the industry’s fi-
nancial decline. Today, streaming has become the dominant mode of music consumption,
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Figure 1: Real Revenue of the Recorded Music Industry, 1990-2023

Music revenue increased in real terms throughout the 2010s, with streaming services representing a growing
share of revenue. Source: RIAA

accounting for 84% of industry revenue in 2023 (Figure 1), and fundamentally reshaping
how music is produced, discovered, and monetized.

2.1.1 Music and its Characteristics

Recorded music is the uniquely arranged combinations of sounds and vocals typically
recorded in a studio. As a product, recorded music exists along numerous dimensions:
length, chords, pitch, beats per minute, vocals, choices of instruments, etc. This results
in infinitely many possible forms of music, ranging from the traditional (e.g., Beethoven’s
Ninth Symphony) to the esoteric (e.g., John Cage’s 4’33”). Many of these dimensions are
continuous, making it possible to use them as characteristics in a model of consumer pref-
erences. (Lancaster 1966). In addition to the classical characteristics from music theory
(e.g, key, tempo, time signature), I include characteristics from machine learning models
(e.g., danceability, energy, valence) in my model. I include descriptions of these charac-
teristics, and examples in popular songs, in the Appendix (see Tables 20 and 21).

Recently, cultural critics have observed a decrease in pop song length over the last
twenty years, alongside a decrease in title length and an increase in lyric density.6 In Figure

6. https://michaeltauberg.medium.com/music-and-our-attention-spans-are-getting-shorter-
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Figure 2: Average Song Duration on Billboard’s Hot 100, 1990-2022

The average length of songs on Billboard’s Hot 100 has been decreasing over time, with a noticeable accel-
eration in the 2010s. Source: Billboard

2, I plot the average length of songs on Billboard’s Hot 100, by release year, finding that
the average length of songs has been decreasing over time, with a noticeable acceleration
in the 2010s.

To augment this, I conduct a reduced-form analysis of songs on Billboard’s Hot 100 to
confirm these trends. InAppendix 8, I estimate the correlation between the introduction of
newmusic formats and song duration, finding that the introduction of streaming services
and recommender systems correlates with a 40-second decrease in the average length of
songs on Billboard’s Hot 100. In Appendix 8, I also examine whether consumer prefer-
ences have changed over time, and whether these preferences are driving the changes
in song length, finding that consumer preferences for song length have nog significantly
changed over time.

2.2 Industry Structure

I group the recordedmusic industry into four sets of agents: artists, rightsholders, stream-
ing platforms, and consumers. Figure 3 maps out the relationships between these agents.

Beginning on the left, artists create music, either by themselves or in contract with

8be37b5c2d67
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Artists
(Queen)

Producers
(Sony)

Platforms
(Spotify)

Consumers
(Us)

Produce music
Release music
to platforms

Deliver music
and recommendations

Pay subscription
and listen to music

Share 60% of
subscription revenue

based on streamshare

Pay production costs
and royalties;

assist production

Figure 3: Vertical Structure in the Music Industry

This structure identifies the economics relationships in themusic industry, and highlights the ones I estimate
in red.

a record label, who serves as a rightsholder. An artist on contract with a rightsholder
typically receives an advance and production assistance in exchange for ownership over
themusic they create. Artists also receive a share of the revenue (royalties) from themusic
they create, as negotiated with the rightsholders.7 The market for artists is highly diffuse,
with tens of thousands of artists working on music each day, competing not just with
each other, but with the entire history of recorded music. The Bureau of Labor Statistics
estimates that there are approximately 35,000 musicians and singers in the U.S., as of May
2023.8

Rightsholders, such as Sony, Warner, and Universal (the Big Three record labels), are
responsible for distributingmusic to consumers, either through physicalmedia (e.g., CDs)
or through digital platforms (e.g., Spotify). They also search for new and upcoming artists
to sign to contracts and promote their music. These labels also have a wide variety of sub-
sidiary labels (or sub-labels) to focus on particular types ofmusic or audiences. These sub-
labels sometimes end up competing for artists. Rightsholders also negotiate with stream-
ing platforms to distribute music, bargaining over the share of revenue they receive from
the platform, and the terms of the contract. I discuss the bargaining between rightsholders
and streaming platforms in more detail in the following subsection.

Rightsholders are a highly concentrated section of the industry, with the Big Three
(WMG, Sony, and UMG, including their sublabels) capturing 77% of the market. Other
independent labels comprise the remaining 23% of the market. Figure 4 shows the market
share of rightsholders (and streaming services).

7. Song Royalties are an incredibly complex area of law, which I simplify for the purpose of this analysis
by focusing on the payments between rightsholders and platforms. For a more detailed explanation, see
https://www.royaltyexchange.com/blog/music-royalties-101-intro-to-royalties

8. https://www.bls.gov/oes/current/oes272042.htm
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Figure 4: Concentration in the Recorded Music Industry, 2023

The Big Three record labels (WMG, Sony, UMG) comprise 77% of the market, while independent labels
comprise the remaining 23%. The Big Three streaming platforms (Spotify, Apple Music, Amazon Music)
comprise 80% of the market.

Streaming platforms, such as Spotify, Apple Music, and Amazon Music, are respon-
sible for distributing music to consumers, either through a subscription or ad-supported
model. These platforms began to enter the U.S. market in the early 2010s, after starting in
Europe in the late 2000s. They have revolutionized the recorded music industry, allowing
consumers to access a vast catalog of music for a fixedmonthly fee. As with rightsholders,
this section of the industry is highly concentrated, with five firms comprising approxi-
mately 80% of the market. Figure 4 shows the market share of streaming platforms (and
rightsholders).

These platforms have relatively homogeneous music catalogs, hosting songs from the
Big Three andmany independent labels. Instead, they differentiate instead on their recom-
mendation engines, interface, and ancillary features (e.g., exclusive podcasts, integration
with smart devices, etc.). I speculate that the presence of YouTube as a free, ad-supported
platform for music and lyric videos made it difficult for these platforms to compete on
exclusive content.9 This is especially true because non-rightsholders can easily upload
music to YouTube, creating a difficult cat-and-mouse game for uploaders, rightsholders
and the platform. It is easier for rightsholders to upload their music to YouTube and gain

9. While some music platforms (e.g., TIDAL) attempted to differentiate through exclusive music, they
abandoned this strategy.
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ad revenue for it, thereby making YouTube a streamer of last resort for consumers.
Streamingplatforms offermultiple options to consumers, which I group into two types:

ad-supported access and premium subscriptions. Ad-supported access allows consumers
to access music at no monetary cost, instead facing use restrictions and advertising. On
Spotify, ad-supported consumers have total access to fifteen playlists, which are a mix-
ture of editorial (human-curated) and algorithmically-generated playlists. For any other
playlist on the service, users can only shuffle songs (i.e., they cannot directly select a song).
Additionally, ad-supported users can only skip up to six songs per hour, must listen to
advertising breaks during their streaming sessions, and stream at lower audio quality (bi-
trate). Premium subscribers pay a monthly fee ($11.99 a month at the time of writing,
$9.99 at the time of analysis) to remove all the aforementioned restrictions.10 Premium
subscribers can also download songs for offline listening, stream higher quality audio,
and listen to 15 hours of audiobooks per month.

2.2.1 Vertical Contracts between Rightsholders and Streaming Platforms

Spotify contracts with rightsholders to distribute music to consumers. These contracts
set the terms under which Spotify can license music and how Spotify pays rightshold-
ers.11 Spotify pays rightsholders for royalty-bearing streams (RBS), defined as any play of
a song that lasts more than 30 seconds.12 Rightsholders earn income based on their song’s
streamshare, which is its number of royalty-bearing streams divided by the total num-
ber of royalty-bearing streams on the platform in a given month. I write the streamshare
equation as follows:

Streamshare𝑗 =
RBS𝑗∑
𝑘 RBS𝑘

Spotify pays rightsholders separately for ad-supported and subscription consumers,
and these two types of consumers have different payment structures. For premium sub-
scribers, Spotify pays rightsholders the greatest of a share of gross revenue or a per-
subscriber fee, multiplied by a sharing parameter. For ad-supported subscribers, Spotify
pays rightsholders the greatest of a share of ad revenue of a per-stream fee. Figure 5 shows
the payoff structure for rightsholders.

At the time Spotify entered the market in 2011, its contract with Sony stated that the
revenue share was 60%, the per-subscriber fee was $6, and the per-stream fee was $0.0225.
The contract also had a most-favored nation clause, suggesting that these rates prevailed

10. Spotify also offers a variety of group and student subscriptions at a lower price per user.
11. Singleton (2015)
12. Spotify has begun to deploy longer cutoffs for certain types of songs to qualify for RBS.

https://artists.spotify.com/en/blog/modernizing-our-royalty-system
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Revenue Sharing Payoff:
𝜏 × 𝑅𝐵𝑆 𝑗∑

𝑗∈𝒥 𝑅𝐵𝑆 𝑗
× RevSpotify

Per-User Payoff(
𝑤𝑠 × 𝑅𝐵𝑆 𝑗∑

𝑗∈𝒥 𝑅𝐵𝑆𝑗
× SubsSpotify

)

Per-Play Payoff(
𝑤𝑎 × 𝑅𝐵𝑆 𝑗

)

Song earns greater
of the two payoffs

Song earns greater
of the two payoffs

Sub
scr

ibe
rs

Ad-supported
listeners

Figure 5: Revenue Sharing Payoff Structure

Rightsholders usually receive a percentage of Spotify’s revenue proportionate to their streamshare, but can
receive a per-user/per-play fee as a fallback for premium subscribers and ad-supported listeners, respec-
tively.

for all three of the major labels. Spotify has since renegotiated these rates, but the exact
terms are not public.

At launch, Spotify charged $9.99 for a premium subscription, so the revenue share and
per-subscriber fee were equivalent at that time. Since Spotify has gone public in 2017, its
premium average revenue per user has been well below the per-subscriber fee, primar-
ily because of family and student plans, which reduce the price per user. Assuming that
Spotify has not renegotiated the per-subscriber fee with rightsholders, this would imply
that this fee (times the number of subscribers) is greater than the revenue share, and that
Spotify is paying rightsholders the per-subscriber fee. Singer and Rosenblatt (2023) sug-
gest, however, that the per-subscriber fee is a floor, and that Spotify pays rightsholders a
revenue share of approximately 65% of gross revenue.13

The structure of this contract is vital for understanding the incentives of rightshold-
ers to release different kinds of music on Spotify. Firms have a clear incentive to reduce
song length to increase the number of RBS, and thereby increase their streamshare and
revenue from Spotify. Spotify, however, would pay more for ad-supported subscribers if
more streams occurred, so they would prefer to have longer songs. Consumers also have
preferences over song length, which can affect these incentives.

Spotify responds to these incentives through its recommender system. Singer and
Rosenblatt (2023) report that Spotify’s recommender system rewards songs that users

13. Specifically, labels receive 52%, and publishers receive another 10-12%.
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complete, andpenalize ones that consumer only partially listen to. This has driven rightsh-
olders to adjust the structure and characteristics of their music to align with the priorities
of Spotify’s recommender system. I investigate how rightsholders have responded to the
recommender systems, and whether these recommender systems are welfare-improving.

3 Data

I leverage two sources of data in this project: theMusic Streaming SessionsDataset (MSSD,
Brost, Mehrotra, and Jehan 2018), and data from Spotify Charts. The MSSD consists of
160m consumer-level streaming sessions between July 15th and September 18th of 2018,
with each session containing up to twenty songs a consumer interacted with on Spotify.
The MSSD defines a streaming session as any listening session with less than 60 seconds
between songs. The data also only contain streaming sessions with at least ten songs, and
it truncates all streaming sessions after twenty songs.

The MSSD contains both song characteristics for the approximately 3 million songs in
its data and data for each of the approximately 2bn song-consumer interactions. The song
characteristics include both musical characteristics and machine learning characteristics.
Musical characteristics include tempo, duration, key, time signature, and mode. Machine
learning characteristics are data generated bymachine learning classification systems, and
these characteristics include danceability, energy, valence, and acousticness. Machine
learning characteristics are continuous on a [0, 1] support, while musical characteristics
may be continuous (e.g., tempo) or discrete (e.g., key).

Consumer-song interactions include a wide array of information about the consumer
and how they interact with the song. The variable of interest is how long the consumer lis-
tens to the song, which is grouped into four bins (“skipped very early”, “skipped early”,
“listened to most of the song”, “listened to the entire song”). I assume that consumers
who do not skip a song very early (i.e., are not in the first bin) have listened to enough of
the song for it as an RBS. I also observe details about the consumer’s streaming session:
the position of the song in the session, the date and hour when they listened to each song
in the session, and whether the consumer was listening to a song they searched for, their
own collection, an editorial playlist, or an algorithmic playlist or radio station. Addition-
ally, I observe what the consumer did after each song, which I use to determine under
what circumstances a consumer ended their streaming session. Moreover, I observe the
consumer’s subscription status at the time of listening. I use these choice-level data to
estimate my model of consumer demand and the recommender system.

When working with the MSSD, I use a stratified sampling strategy. Specifically, I sam-
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ple 0.5% of the consumers who listen to each song. For each song, I sample all of that con-
sumer’s streaming session. Additionally, the same consumer may be sampled in multiple
songs, but I only include their data once. This results with a sample of 180m observations,
representing approximately 10% of the total data. This stratification ensures that every
song in the market is in the sample, roughly in proportion to its popularity. It is possible
that sample variance may occur in consumer characteristics, but the sample size (180m) is
large enough that this is unlikely to present a challenge.

My second data source is Spotify Charts, a website that reports the top 200 songs on
Spotify daily for each country Spotify operates in. For each of these top 200 songs, Spotify
reports the number of streams, providingmarket-level consumption information for these
top 200 songs. Spotify also provides the song’s Spotify ID, which can be connected to
Spotify’s API to retrieve the song’s characteristics. I rely on a Kaggle dataset that scraped
Spotify Charts and Spotify’s API to collect this data.14 I use these data, in conjunction
with the demand and recommender system estimates, to estimate the supply model of
the industry and to conduct counterfactual analysis.

Another data source towhich I have access is the LFM-2B. This dataset contains 2bn lis-
tening events from Last.FM, a music scrobbling service. Users can connect their listening
histories to Last.FM, which records them and provides recommendations and analysis of
their listening habits. These data are available through a public API, and they have been
consolidated into a single dataset by Melchiorre et al. (2021). These data contain all lis-
tening events from 2005 to 2020, including the song, how long a user listened, and some
demographic information about the user: age, gender, country. ListenBrainz is a similar
service, which has becomemore popular in recent years, and provides similar information
as the LFM-2B. I plan to use these data to augment my demand estimates, and to provide
more comprehensive listening histories to improve the recommender system model.

3.1 Descriptive Statistics

Table 1 reports the descriptive statistics for the Spotify Charts data.
I focus on the top 200 songs in the US between 2017 and 2021. In this period, 9, 244

unique songs entered Spotify’s top 200. The average song length is 3 minutes and 24 sec-
onds, with a standard deviation of 54 seconds. However, the range of length is very wide,
with songs as short as 30 seconds and as long as 15 minutes and 45 seconds making it to
the top 200. The average song tempo is 122 beats per minute (BPM), with a low of 40 BPM
and a high of 212 BPM. All the machine learning characteristics are bounded between 0

14. https://www.kaggle.com/edumucelli/spotifys-worldwide-daily-song-ranking
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Mean Median Standard Deviation Min Max
Duration (s) 203.27 199.32 54.28 30.13 943.53
Release Year 2019 2019 1.39 2017 2021
Acousticness 0.23 0.13 0.25 0.00 0.99
Danceability 0.67 0.68 0.15 0.06 0.98
Energy 0.62 0.63 0.17 0.01 1.00
Instrumentalness 0.01 0.00 0.09 0.00 0.96
Liveness 0.18 0.13 0.14 0.02 0.97
Loudness -6.83 -6.38 2.71 -38.86 0.35
Mode 0.61 1.00 0.49 0.00 1.00
Speechiness 0.15 0.09 0.13 0.02 0.97
Tempo (BPM) 122.41 122.08 30.04 40.32 212.06
Time Signature 0.97 1.00 0.16 0.00 1.00
Valence 0.46 0.46 0.22 0.03 0.98

Table 1: Spotify Charts Song Characteristics (𝑁 = 9, 244 songs)
Songs in Spotify’s Top 200 between 2017 and 2021 were predominantly from those years, high in energy and
danceability, and low in acousticness and speechiness.

and 1, but their averages vary widely: the average song has an average danceability of
0.67, but an average acousticness of 0.23. The average song is an uptempo, energetic, and
danceable track, unlikely to be a live recording or acoustic performance. It’s also unlikely
to be a spoken word song, but it could convey either positive or negative emotion (the
valence is 0.46). The Spotify Charts data also provides information about the lifecycle of
songs. Figure 6 reports the number of streams of a song by day after release:

This figure shows the average number of streams each song that made it on Spotify’s
Top 200 received in the days since its release. Unsurprisingly, songs get a significant num-
ber of their streams in the first 100 days after release, with the average number of streams
above 400, 000 per day for the first 100 days. After that, the number of streams decreases,
with a small uptick around the one and two-year marks, but continuing to fall off over
time. The number of streams becomes more volatile after the three-year mark, because
fewer songs have been out for that long in my data. Table 2 reports the descriptive statis-
tics for the songs in the Music Streaming Sessions Dataset.

The MSSD contains approximately 3.7 million unique songs, with an average length
of 3 minutes and 54 seconds, with a standard deviation of 1 minute and 48 seconds. Com-
pared to the Spotify Charts data, these songs are longer and have a higher standard devi-
ation in length. These songs are also older than the Spotify Charts songs, with an average
release year of 2009 (median 2013), compared to 2019 (median 2019) for the Spotify Charts
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Figure 6: Number of Streams of Songs on Spotify’s Top 200, by Days since Release

Songs receive most of their streams in the first 100 days after release, with a small uptick around the one
and two-year marks.

Mean Median Standard Deviation Min Max
Duration (s) 233.19 217.91 108.40 30.00 1800.00
Release Year 2009 2013 11.03 1950 2019
Acousticness 0.35 0.22 0.34 0.00 1.00
Danceability 0.56 0.57 0.19 0.00 1.00
Energy 0.59 0.63 0.26 0.00 1.00
Instrumentalness 0.21 0.00 0.34 0.00 1.00
Liveness 0.21 0.13 0.19 0.00 1.00
Loudness -9.60 -8.08 5.73 -60.00 6.28
Mode 0.65 1.00 0.48 0.00 1.00
Speechiness 0.10 0.05 0.14 0.00 0.97
Tempo (BPM) 120.07 119.95 30.43 0.00 249.99
Time Signature 0.97 1.00 0.18 0.00 1.00
Valence 0.48 0.47 0.27 0.00 1.00

Table 2: MSSD Song Characteristics (𝑁 = 3.7𝑚 songs)
Songs in the MSSD are longer, older, and more varied in their characteristics than the Spotify Charts data.

songs. The songs in these data have similar tempos and levels of energy and valence, but
vary slightly in other characteristics, such as danceability and instrumentalness. Over-
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Mean Standard Deviation
Session Length 18.07 6.91
% Shuffle 0.35 0.31
% Premium Subscribers 0.84 0.31
% RBS 0.58 0.31
% Completion 0.34 0.31
% Morning Listen 0.24 0.31
% Afternoon Listen 0.39 0.31
% Evening Listen 0.29 0.31
% Night Listen 0.08 0.27
% Monday Listen 0.15 0.31
% Tuesday Listen 0.15 0.31
% Wednesday Listen 0.14 0.31
% Thursday Listen 0.14 0.31
% Friday Listen 0.15 0.31
% Saturday Listen 0.13 0.31
% Sunday Listen 0.13 0.31
% Catalog Listen 0.24 0.43
% Chart Listen 0.01 0.11
% Editorial Playlist Listen 0.15 0.35
% Algorithmic Playlist Listen 0.03 0.16
% Algorithmic Radio Listen 0.15 0.35
% User Collection Listen 0.42 0.49

Table 3: MSSD Consumer Characteristics (𝑁 = 180𝑚 song-consumer interactions)
Consumers in the MSSD have long streaming sessions, with a high percentage of RBS, but a low percentage
of song completion. They primarily listen to their own collections, but about 20% of their listens are algo-
rithmically driven.

all, the difference in the data is representative of the changes in popular music over the
last decade, with the MSSD data representing a wider variety of music than the Spotify
Charts data. Specifically, the Spotify Charts data reflects more spoken-word, danceable,
and shorter songs. When using both of these datasets, I standardize the Spotify Charts
variables using the MSSD variables. Table 3 reports the consumer-level statistics for my
sample of the Music Streaming Sessions Dataset.

Consumers in my sample are primarily premium subscribers, with 84% of the sample
being premium subscribers. This is significantly higher than the percentage of premium
subscribers Spotify reports, which is 40% of its user base.15 It is, however, more represen-

15. Spotify Q2 2024 Earnings Report
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tative of the percentage of revenue Spotify earns from premium subscribers, which is 88%
of its revenue.16 These users have very active streaming sessions, with an average session
length of 18 songs. They also are somewhat likely to listen on shuffle, with 35% of sessions
being shuffle sessions. These listeners are also rather active: while 58% of consumer-song
interactions are long enough to be considered anRBS, consumers only complete 34%of the
songs they receive. Listening time is even throughout the week, with 13-15% of sessions
occurring on each day of the week. Within a day, however, very little listening occurs at
night (12-6 AM), with only 8% of sessions occurring during this time.

Consumers in my sample primarily listen to music from their own search process,
or from their own collections, with 66% of sessions being from these sources. Algorith-
mic playlists and radio stations consist of 18% of streaming sessions. Editorial (human-
curated) playlists and top charts are the least common source of music, with only 16% of
sessions coming from these playlists. I use these separate listening contexts to separately
estimate the preferences of consumers who receive songs through the recommender sys-
tem (algorithmic playlists or radio) and those who do not.

4 Model

To evaluate the effect of recommender systems on the music industry, I develop a struc-
tural model of the industry, with three sets of agents: consumers, a recommender system,
and rightsholders. Consumers (the demand side) receive songs from the platform (and its
recommender system) and choose whether to listen to them. I capture this choice using
a random utility model, which generates a probability of listening to a song based on its
characteristics and the consumer’s characteristics. The recommender system, which I treat
as an exogenous technology, computes the probability consumers receive particular songs
based on their characteristics and the consumer’s characteristics, and it surfaces songs in
proportion to their probability of being listened. The joint probability of being surfaced
and the probability of being heard, times the number of potential listeners, is the demand
rightsholders face. On the supply side, rightsholders decide whether to release songs pro-
vided to them by artists, paying a fixed cost to releasing them. They enter themarket if the
expected revenue, which is a function of the choice probabilities at the time of release and
in the future, from the song is greater than the fixed cost of releasing it. These rightshold-
ers are forward-looking, anticipating the evolution of the market and the recommender
system through first-order Markov processes. They draw their fixed cost from a lognor-
mal distribution, whose parameters are functions of song characteristics and known to the

16. Spotify Q2 2024 Earnings Report
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Each producer chooses whether to release song
with characteristics 𝑋𝑗 , paying fixed cost 𝐹𝑗(𝑋𝑗)

The recommender system
on Spotify

determines the probability of
recommending song 𝑗

Consumers choose to listen or skip
each song 𝑗 they receive

Figure 7: Timing of the Model in Each Period

Producersmove first in themodel, followed by the recommender system, then consumers. I solve thismodel
recursively.

rightsholder. My solution concept is an oblivious equilibrium, where each firm considers
only the long-run average choice of the industry, rather than each rival’s choice. Figure 7
describes the timing of the model each period.

4.1 Demand

Consumers in my demand model are subscribers to a streaming platform offering them a
catalog of songs.17 Each day, these consumers open the streaming app and start receiving
songs from the platform, whether from the recommender system or from other contexts.
For each song they receive, consumers make one of three possible choices: listen to the
song up to the amount necessary for a Royalty-Bearing Stream (RBS), skip the song, or
stop listening to the platform, which I treat as an outside option. Figure 8 describes the
decision tree for consumers in the demand model.

I maintain one assumption about consumers in my model:

Assumption 1 Consumers do not consider how their choice affects future personalized recom-
mendations.18

17. I do not model the extensive decision to subscribe to Spotify (or join the ad-supported tier). While
Spotify does report subscriber data, price variation is somewhat limited over time.
18. Anecdotal evidence suggests consumers do not extensively think about future songs when deciding

whether to listen to a song, or how their choice affects future recommendations, especially when they are
uninformed about the specific mechanisms of the recommender system.
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Receive Song

Listen
(60%)

Skip to
Next Song

(35%)

Log Off:
Outside Option

(5%)

Figure 8: Consumer Decision Tree

Consumers, after receiving a song, choose whether to listen to a song, skip it, or log off, ending their stream-
ing session.

This assumption allows me to model consumers as static agents, simplifying the de-
mand model and allowing me to focus on the supply-side effects more directly. Were I
to relax this assumption, consumers would face a dynamic problem, incorporating their
perception of the recommender system into their decision-making process. Consumers
would strategically select songs they believe would improve their recommendations, par-
ticularly early in their streaming session, when they are more likely to be uninformed
about the recommender system’s characteristics. That is, they would listen in full to songs
they like, but decline to complete songs they dislike (in terms of the characteristic space).
This interacts with the RBS cutoff, as consumer may still listen to a song up to the RBS cut-
off, but not to completion. As such, firms may have a strategy of releasing songs that are
a poor fit for consumers, in order to get RBSs as consumers train their recommendations.
The tradeoff, however, is that these songs would receive far less revenue in the long term.

Alternatively, I could relax this assumption by allowing consumers to choose a bundle
of songs to listen to, rather than individual songs. In practical terms, they would be se-
lecting a playlist of songs, or a radio station. Here, they would consider the utility of the
entire bundle, and how the bundle in aggregate would affect their recommendations. The
modeling challenge would be capturing complementarities of the bundle, and the RBS
decisions for each song in the bundle. I capture some bundle selection effects indirectly
through consumers’ adaptive expectations of songs, as I discuss in section 4.2.

4.1.1 Choice Structure and Utility Model

Formally, consumers 𝑖 have access to a set of songs𝒥 that they receive from the platform.
Each song 𝑗 ∈ 𝒥 has a vector of characteristics𝑋𝑗 , which are known to the consumer. Con-
sumers have preferences over these characteristics. Each consumer, when receiving one of
these songs from the platform, faces three alternatives 𝐵. First, they can choose to listen to
the song, which I denote as 𝐿, receiving the utility from listening to the song. The song’s
characteristics enter into the consumer’s utility from listening, as does the consumer’s own
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characteristics𝑌𝑖 . Second, they can skip the song, which I denote as 𝑆, receiving the utility
from skipping the song. I discuss the utility of skipping songs in section 4.2. Finally, they
can log off the platform, which I denote as 𝑂, earning zero utility.

In my model, consumers choose alternative 𝐵 if and only if

𝑈(𝐵, 𝑌𝑖 , 𝑋𝑗) ≥ 𝑈(𝐵′, 𝑌𝑖 , 𝑋𝑗) for all 𝐵′ ∈ ℬ \ 𝐵
In addition to the above deterministic utility, I incorporate a random error term 𝜖𝑖 𝑗𝐵

into the utility function, to capture the unobserved heterogeneity in the utility of each
alternative. To formallymodel this discrete choice behavior influenced by both observable
characteristics and unobserved heterogeneity, I employ a random utility model.

I now describe the functional form of the utility generated by each alternative 𝐵. Con-
sumer 𝑖’s utility of listening to a particular song 𝑗 in session position 𝑠 is given by:

𝑈𝐿,𝑖𝑗𝑠 = 𝛽𝑋𝑗 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠 + 𝜖𝑖 𝑗𝑠 (1)

In this utility function, 𝑋𝑗 are a vector of linear and quadratic song characteristics (vari-
ables specific to each song 𝑗, or alternative), 𝑌𝑖 are a vector of consumer characteristics
(variables specific to each consumer 𝑖 across all choices 𝐵, or case), 𝜂𝐿𝑠 are position-specific
fixed-effects, and 𝜖𝑖 𝑗𝑠 is a Type 1 (Gumbel) Extreme Value error term. The consumer char-
acteristics and session fixed effects are case-specific variables, so their parameters are also
case-specific, following the standard in conditional choicemodels (Train 2009). Intuitively,
consumers prefer certain types of music, which I decompose into quantitative characteris-
tics, and their utility from a particular song may depend on when they are listening, both
during the day, and where they are in their streaming session. Additionally, to capture
horizontal preferences over music, I employ quadratic terms for the song characteristics,
which allow for non-linear preferences. Passive consumers may not skip songs often (if
at all); active users are likely to skip songs often, searching for one they like; and hybrid
consumers may skip early in the streaming session before settling on a set of songs they
enjoy, and listening to them.

I normalize the mean utility of the outside option to zero:

𝑈𝑖0𝑠 = 𝜖𝑖0𝑠 (2)
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4.2 Utility of Skipping Songs

To capture the utility of skipping to the next song, consumers form adaptive expectations
over the characteristics of the next song, based, generally, on the songs they have received
in their streaming session so far. Their utility from skipping has the following equation:

𝑈𝑆,𝑖𝑗𝑠 = 𝛽𝐸𝑖𝑠[𝑋𝑗 |𝑋𝑗 ,𝑠−1] + 𝛾𝑆𝑌𝑖 + 𝜂𝐿𝑠 + 𝜖𝑖 𝑗𝑠 (3)

I refine these expectations using listening context data from the MSSD. Specifically, I
apply the following rules:

• If consumers are listening to an algorithmic playlist or radio station, then their ex-
pected utility of skipping comes from the average characteristics of the songs they
have received in their streaming session so far.

• If consumers are listening to their own catalog or playlist, or a song they searched
for, then their expected utility of skipping comes from the average characteristics of
the songs in their entire streaming session.

• If consumers are listening to editorial playlists or top 200 playlists, then their ex-
pected utility of skipping depends on whether they shuffle the playlist: if they do,
expected utility comes from the characteristics of songs received so far; if not, then
the expected utility comes from the average characteristics of the songs in streaming
session.

Intuitively, consumers knowmore about their ownplaylists, music catalog, or searches,
so their expectations will be more refined than just discovering music on an algorithmic
playlist. If they are listening to an editorial playlist or top 200 playlists, I use shuffling as a
proxy for awareness of songs on the playlist: consumers who do not shuffle may be more
aware of the tracks on the playlist, and therefore more aware of their characteristics, than
those who do not.

4.2.1 Choice Probabilities

In this model, consumers choose whether to listen to the song they receive, to skip it, or
to log off, ending their streaming session and taking an outside option.

The assumption of a Type 1 Extreme Value (T1EV) error term leads directly to the fa-
miliar conditional logit probability structure. The probability that consumer 𝑖 listens to
song 𝑗 in session position 𝑠, conditional on the song being recommended, is given by:
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𝑃(𝑖 listens to 𝑗)
=

exp(𝛽𝑋𝑗 + 𝛾𝑌𝑖 + 𝜂𝑠)
1 + (exp(𝛽𝑋𝑗 + 𝛾𝑌𝑖 + 𝜂𝑠) + exp(𝛽𝐸𝑖𝑠[𝑋𝑗 |𝑋𝑗,𝑠−1] + 𝛾𝑌𝑖 + 𝜂𝑠))

(4)

The probability is the exponentiated utility of listening divided by the sum of expo-
nentiated utilities of all available options (Listen, Skip, and the Outside Option, whose
utility is normalized to 0, yielding 𝑒𝑥𝑝(0) = 1 in the denominator).

Realistically, however, consumers will have different preferences based on their lis-
tening context. This distinction is vital because consumers actively seeking music (direct
selection) may exhibit different preferences or sensitivities to song characteristics com-
pared to when they are passively consuming recommendations. As such, I allow for dif-
ferent preference parameters for consumers who are using the recommender system and
thosewho are not. Consumerswho are using the recommender system have the following
choice probability:

𝑃(𝑖 listens to 𝑗|RS surfaces 𝑗 to 𝑖)
=

exp(𝛽𝑟𝑋𝑗 + 𝛾𝑟𝑌𝑖 + 𝜂𝑟,𝑠)
1 + (exp(𝛽𝑟𝑋𝑗 + 𝛾𝑟𝑌𝑖 + 𝜂𝑟,𝑠) + exp(𝛽𝑟𝐸𝑖𝑠[𝑋𝑗 |𝑋𝑗 ,𝑠−1] + 𝛾𝑟𝑌𝑖 + 𝜂𝑟,𝑠))

(5)

Consumers who are not using the recommender system, whom I refer to as direct
selection, have the following choice probability:

𝑃(𝑖 listens to 𝑗|RS does not surface 𝑗 to 𝑖)
=

exp(𝛽𝑑𝑋𝑗 + 𝛾𝑑𝑌𝑖 + 𝜂𝑑,𝑠)
1 + (exp(𝛽𝑑𝑋𝑗 + 𝛾𝑑𝑌𝑖 + 𝜂𝑑,𝑠) + exp(𝛽𝑑𝐸𝑖𝑠[𝑋𝑗 |𝑋𝑗 ,𝑠−1] + 𝛾𝑑𝑌𝑖 + 𝜂𝑑,𝑠))

(6)

Information on which consumers are conditioning on the recommender system comes
from the listening context information in the MSSD, as described in Table 3. Consumers
who do not use a recommender system have the same utility functions as described above,
but their preference parameters (𝛽, 𝛾, 𝜂) will be different.

4.3 Recommender System

Recommender systems are an integral component tomusic streaming, directing consumers
towards songs the system thinks they will enjoy. These recommender systems are func-
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tionally trying to solve a multi-armed bandit problem: finding the best product (arm) to
offer to consumers (slot machines), with success being a purchase or interaction with the
product. To train the optimal recommender system, platforms must balance exploration
(trying new products) and exploitation (recommending products that are likely to be suc-
cessful). Firms typically rely on an 𝜖-greedy algorithm, where the firm surfaces the best
product with probability 1 − 𝜖, and a random product with probability 𝜖.

I group these systems into three types: collaborative filtering recommender systems,
content-based recommender systems, and hybrid recommender systems. 19 Collaborative
filtering recommender systems surface products based on products similar users like. For
example, if person 1 likes songs, X, Y, and Z, and person 2 likes songs W, X, and Y, then
the system may recommend song Z to person 2 and song W to person 1. In a real-world
example, Amazon uses collaborative filtering when recommending products “people like
you also bought”. Content-based recommender systems decompose products into charac-
teristics, and recommend products with similar characteristics to those the user has liked
in the past. For example, if person 1 likes songs with a high tempo, the system may rec-
ommend songs with a high tempo to person 1. Continuing the Amazon example, they
use content-based recommendations when describing “similar products”. Hybrid recom-
mender systems combine aspects of both collaborative filtering and content based recom-
mender systems. Most recommender systems are hybrid, albeit weighted towards one
end or the other.

Spotify’s recommender system is a hybrid system weighted heavily towards content-
based recommendations.20 They use a combination of user and song characteristics to
recommend songs to users. While the recommender system itself is a closely held black
box, various research papers have discussed its mechanisms, and I use these papers for
guidance in constructing my model of the recommender system, particularly McInerney
et al. (2018).

McInerney et al. (2018) describes Spotify’s recommender system as having an objective
(or reward) function with the following form:

𝑟𝑖 𝑗 = 𝜎(𝜄1𝑋𝑗 + 𝜄2𝑌𝑖)
In this equation, 𝑟𝑖 𝑗 is the binary outcome from recommending a song 𝑗 to listener 𝑖. 𝑋𝑗

are the song characteristics, and 𝑌𝑖 are the listener characteristics. 𝜄1 and 𝜄2 are the param-
eters to be trained. 𝜎 is a sigmoid loss, making this equation a logistic regression. McIner-

19. Google Developers
20. ”Understanding Recommendations,” Spotify Safety and Privacy
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ney et al. (2018) further augment this function with higher-order interactions between the
user and consumer characteristics to obtain more personalized recommendations. They
also interact these terms to further personalize the recommendations. To implement the
recommender system, they use a standard 𝜖-greedy algorithm.

I use a logistic regression to model Spotify’s primarily content-based recommender
system. I treat this recommender system as an exogenous technology to which Spotify
has access, and I estimate the parameters of the recommender system using data from
the MSSD. I assume for simplicity that, when Spotify is recommending songs, they are
following a pure exploitation strategy, rather than an 𝜖-greedy strategy. This is because
most consumers likely already have extensive, albeit unobserved, listening histories on
Spotify. Additionally, anthropological evidence suggests that Spotify does not take very
long to move to an exploitation-heavy strategy. (Eriksson et al. 2019)

I further assume that the recommender system does not meaningfully change its pa-
rameters, objective function, or strategy in the timeframe of my data. My data only cover
two months, making it unlikely Spotify significantly retrained its model in that interval.
If Spotify did retrain its model within the interval of my data, I would likely observe in
the distribution of songs recommended to consumers, as well as the distribution of songs
listened to by consumers.

I estimate the recommender system using the following equation:

𝑃(RS surfaces 𝑗 to 𝑖) = exp(𝜂1𝑋1𝑗 + 𝜂2
∏8

𝑛=2 𝑋𝑛𝑗 + 𝜂3𝑌𝑖)
1 + exp(𝜂1𝑋1𝑗 + 𝜂2

∏8
𝑛=2 𝑋𝑛𝑗 + 𝜂3𝑌𝑖)

(7)

Here, 𝑃(RS surfaces 𝑗 to 𝑖) is estimated probability that Spotify recommends song 𝑗 to
consumer 𝑖. 𝑋1𝑗 are song characteristics from music theory, and 𝑋𝑛𝑗 are machine learning
characteristics, interacted with each other. 𝑌𝑖 are consumer characteristics, and 𝜂1, 𝜂2,
and 𝜂3 are parameters to be estimated. Unlike in my choice model, the outcome variable
𝑃(RS surfaces 𝑗 to 𝑖) is a listen to completion, rather than just enough to qualify as an RBS.
The recommender system also places no value on skipping a song, whereas consumers
may have some expected utility for skipping a song (e.g., to find a song they like more). I
take equation 7 to the MSSD data.

Having described the recommender system and the choicemodel, I combine these two
models to create the demand producers face:
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𝑃(𝑖 listens to 𝑗) = 𝑃(RS surfaces 𝑗 to 𝑖) × 𝑃(𝑖 listens to 𝑗|RS surfaces 𝑗 to 𝑖)
+ (1 − 𝑃(RS surfaces 𝑗 to 𝑖)) × 𝑃(𝑖 listens to 𝑗|RS does not surface 𝑗 to 𝑖)

(8)

For producers, consumers can access their songs in two ways: through the recom-
mender system, or through direct selection. I treat these other means as the complement
to the probability the recommender system surfaces the song. Intuitively, it can also rep-
resent a function representing consumer awareness of the song outside the recommender
system. As previously discussed, because I observe consumer listening contexts, I can
separately estimate these choice probabilities.

This approach builds on Goeree (2008), who using a joint probability to create a de-
mand structure. She uses this structure to model the demand for computers when con-
sumers have limited information. In place of a recommender system, she uses advertising
to inform the consumers and construct consideration sets. I do not explicitly construct con-
sideration sets, because my choice structure is a sequence of binomial listen/skip choices
(with an outside option), rather than a singlemultinomial choice. Additionally, I have sep-
arate estimates for aware and unaware consumers of music, rather than a single estimate
for consumers with an ad-based awareness function.

4.4 Supply

Rightsholders are the supply side of themusic industry, choosingwhether to release songs
to Spotify. They are forward-looking agents, considering both current and future profits
when making their decision. Rightsholders face a fixed cost to release a song, and they
receive revenue each period based on that song’s streamshare.21

Each rightsholder receives a song from an artist, knowing its characteristics, and they
decidewhether to pay the fixed cost to release the song on Spotify. Inmaking this decision,
rightsholders consider both the probability the recommender system will amplify their
song, and the probability consumers will listen to their song. I maintain one assumption
about rightsholders in my model:

Assumption 2 Each song has an independent rightsholder (i.e., no multi-product competition),
and each song has an exogenous release date, so firms face a one-time binary release/no-release
decision.
21. I treat revenue from Spotify as exogenous, because I do not model Spotify as a strategic agent. I also

focus exclusively on the subscription business model.
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This assumption allows me to model the rightsholder’s decision as a one-time binary
choice, rather than a multi-product competition problem. It also simplifies the state space
of the model, as I do not need to consider potential cannibalization between songs, or
segmented competition. Following other literature on dynamic games, I assume that each
potential song entrant is short-lived, with only one possible release window. (Weintraub,
Benkard, and Van Roy 2008)

If rightsholders were multiproduct firms, then they may be less likely to release newer
songs, because of the risk of cannibalizing their vintage songs. Additionally, if they had
endogenous release dates, then they may be more inclined to delay releases to periods
when competition is less intense, or to try to coordinate releases with other rightsholders.
This would create a more complex model, as rightsholders would need to consider the
release dates of their rivals, and the potential for coordination in releases.

4.4.1 Expected Revenue

This decision to release hinges on comparing the expected lifetime revenue against the
fixed cost of the song, 𝐹𝑗 . Fixed costs are the costs of writing, producing, and releasing a
song.

In making this decision, rightsholders are forward-looking agents, considering both
current and potential future profits when making this release decision against the fixed
cost 𝐹𝑗 . Once released, a song remains on the platform in perpetuity22, potentially gener-
ating revenue in future periods based on its streamshare.23

To effectively make this decision, they must have some way to forecast future period
profits. Specifically, rightsholders need to model two sets of state variables/evolutionary
processes:

• The evolution of rival songs, which affects the probability consumers listen to their
song

• The evolution of the recommender system (i.e., the probability their song is recom-
mended to consumers)

I define 𝒳𝑡 as the mean characteristics of all songs on a given day on Spotify Charts,
and I define 𝜙 as the probability the recommender system recommends a song to a con-
sumer in future periods. These variables define the state space for each rightsholder in

22. In practice, songs can be removed, but for the model’s horizon, perpetuity is a reasonable simplifica-
tion.
23. I treat revenue from Spotify as exogenous, because I do not model Spotify as a strategic agent.
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the market, when solving their dynamic problem. I model the evolution of these two state
variables using a first-order Markov process, where the state variables are a function of
their previous values and a stochastic error term:

𝒳𝑡+1 = 𝜈0 + 𝜈1𝒳𝑡 + 𝜖𝒳𝑡 (9)

𝜙 𝑗,𝑡+1 = 𝜓0 + 𝜓1𝜙 𝑗𝑡 + 𝜖
𝜙
𝑗𝑡 (10)

Rightsholders donot have full awareness of the recommender system’s potential changes,
so I assume they think about the recommender system evolving in such a way that it re-
mains close to its previous state. Additionally, the average song characteristics in the
industry do not rapidly shift from day to day, but do have long-term trends, so they fit a
first-order Markov process well.

I define the rightsholder expected profit function:

𝐸[𝜋 𝑗(𝑋𝑗 ,𝒳 , 𝜙)] = 0.6

(
𝑇∑
𝑡=0

𝛿𝑡𝑅𝑡

(
𝑃(𝑖 listens to 𝑗 with characteristics 𝑋)∑
𝐾 𝑃(𝑖 listens to 𝑘 with characteristics 𝒳)

))
− 𝐹𝑗(𝑋𝑗)

(11)
Each period 𝑡, defined as a day, the rightsholder owning song 𝑗 receive a share of Spo-

tify’s gross revenue 𝑅𝑡 . I assume that Spotify’s revenue is exogenous, and that rightshold-
ers know how much revenue Spotify earns each period. The first term on the right-hand
side is the firm’s variable profit, or the expected revenue from the song, which I subse-
quently denote 𝑉𝑃𝑗 Note that the rightsholder’s variable profits do not include marginal
costs. As digital goods, the marginal cost of releasing to a label of consumers streaming a
song is effectively zero. I further discuss the functional form of the probability of listening
to a song in section 5, including how the Markov processes enter into this probability.

4.4.2 Fixed Costs

Intuitively, rightsholders will not perfectly know the costs of writing, producing, and re-
leasing a song beforehand, but they will possess experience-based knowledge about the
typical costs and how they might vary with song characteristics. For example, a highly
instrumental track might incur different production costs compared to a song requiring
multiple vocalists and complex lyric writing. Therefore, I model these fixed costs as in-
dependently and identically distributed (i.i.d.) across songs following a lognormal distri-
bution. This distribution is suitable as costs must be positive, and it allows for a flexible
shape, potentially capturing a long tail of high-cost songs. The parameters of the distribu-
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tion (location 𝜇𝑗 and scale 𝜎𝑗) are allowed to vary as a function of the song’s characteristics
𝑋𝑗 .24

Formally, I define 𝐹𝑗 as follows:

𝐹𝑗 ∼ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑗(𝑋𝑗), 𝜎𝑗(𝑋𝑗)) (12)

𝜇𝑗(𝑋𝑗) = 𝜇𝑔 + 𝑋′
𝑗𝛽𝜇 (13)

𝜎𝑗(𝑋𝑗) = 𝜎𝑔 + 𝑋′
𝑗𝛽𝜎 (14)

Here, 𝜇𝑔 and 𝜎𝑔 are global parameters representing the aggregate location and scale pa-
rameters. 𝛽𝜇 and 𝛽𝜎 are vectors of song characteristic coefficients capturing the effects of
covariates on the location and scale, respectively.

Specifically, their expected profit from releasing the song must be nonnegative. If the
expected revenue exceeds fixed cost, the rightsholder releases the song; otherwise, it does
not. This entry condition provides the upper bound to the fixed cost of releasing a song.

4.5 Equilibrium

4.5.1 Theoretical Framework: Oblivious Equilibrium

My solution concept is an oblivious equilibrium (Weintraub, Benkard, and Van Roy 2008),
wherein market participants make optimal entry decisions based on simplified represen-
tations of the industry state. This equilibrium concept was developed to analyze dynamic
oligopoly models with a large number of firms, where computing a standardMarkov Per-
fect Nash Equilibrium (MPNE) would be computationally intractable. In an oblivious
equilibrium, firmsmake decisions based only on their own state and the long-run average
industry state, ignoring the specific states of their rivals. This dramatically reduces the
effective state space from the full industry state to just the firm’s own state and a fixed,
long-run average distribution of rivals. The motivation behind this simplification is that
in large markets, individual firm changes have negligible impact on the aggregate, and
idiosyncratic shocks average out over time.

This equilibrium concept is especially appropriate for the music streaming industry,
where thousands of new songs are released daily across diverse genres and styles. In such
a vast market, no single song or rightsholder can significantly impact the aggregate indus-
try state, and individual rightsholders realistically cannot track every competing song. In-
stead, theymake strategic decisions based on their own song’s characteristics and a general

24. I also considered aWeibull distribution, but the lognormal distribution provides a better fit to the data.
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understanding of the competitive landscape, precisely the scenario oblivious equilibrium
was designed to model.

In introducing such an equilibrium, Weintraub, Benkard, and Van Roy (2008) use an
entry and investment game, where firms choosewhether to enter themarket, andwhether
to invest in improving their product quality 𝑥. In this game, firms face a fixed cost of entry
𝐹𝑗 , and they receive a stream of profits 𝜋(𝑥, 𝑠), where 𝑥 is the firm’s quality and 𝑠 is the
industry state (quality of rival firms). They face a fixed cost to enter 𝜅, an investment
function 𝑤(𝜄, 𝜁), where 𝜄 is the amount to invest and 𝜁 is an investment shock, and a scrap
value 𝜙. The entry and investment game is a dynamic game, where firms must consider
the future evolution of the industry state when making their decisions.

The assumptions necessary for such an oblivious equilibrium in such a game are the
following:

1. ∀𝑥, 𝑠 ∈ 𝒩 , 𝜋(𝑥, 𝑠) is increasing in 𝑥, the firm’s quality, and decreasing in 𝑠, the
strength of competition. It is also positive and bounded.

2. The random variables 𝜙 and 𝜁 that affect decisions are independent and identically
distributed (i.i.d.) conditional on state.

3. The investment function 𝑤 is positive but bounded, and that investment transition
functions are continuous.

4. The number of entering firms is a Poisson random variable whose entry rate 𝜆 is
conditional on state. Additionally, 𝜅 > 𝛽 · �̄�, where 𝛽 is the discount factor and �̄�

is the expected scrap value. This ensures that firms will not enter the market just to
sell their scrap value.

In the context of the entry and investment game Weintraub, Benkard, and Van Roy
2008 discuss, and oblivious equilibrium consists of an investment strategy, defined as 𝜇,
and an entry rate, 𝜆, such that:

1. Firms choose a strategy that maximizes their oblivious value function �̃�

2. Either the expected value of entry is zero, or the entry rate 𝜆 = 0.

This approach has strong theoretical foundations. Weintraub, Benkard, and Van Roy
(2008) show that as the market size grows large, the Oblivious Equilibrium strategies and
outcomes approximate those of the true Markov Perfect Equilibrium. For an oblivious
equilibrium to approximate a Markov Perfect Equilibrium, the equilibrium must satisfy a
light-tail condition. This condition requires that stateswhere a small change in the fraction
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of firms has a large effect on the value functionmust have a low probability in the long-run
distribution of states.

This light-tail condition means that very large firms (or large levels of market con-
centration) are unlikely to occur in the long-run distribution of states. If this condition
holds, then the oblivious equilibrium will approximate the Markov Perfect Equilibrium,
as the optimal strategy under an oblivious value functionwill equal to the optimal strategy
where firms track the true industry state, in expectation.

4.5.2 Model Equilibrium: Oblivious Entry in Music Streaming

Having described the theoretical framework of oblivious equilibrium, I now apply it tomy
model of the music industry. In my model, each rightsholder acts as an oblivious agent,
choosing whether to release its song based on the song’s characteristics, the long-run av-
erage characteristics of all songs (rather than tracking each rival’s specific characteristics),
and the probability the recommender system will recommend their song.

Each rightsholder has the following oblivious value function:

𝑉𝑗(𝑎 𝑗 , 𝑋𝑗 ,𝒳 , 𝜙) = 𝑚𝑎𝑥
𝑎∈{0,1}

𝑇∑
𝑡=0

𝛿𝑡𝐸[𝑉𝑃𝑗(𝑎 𝑗 , 𝑋𝑗 ,𝒳 , 𝜙)] − 𝐹𝑗(𝑎 𝑗 , 𝑋𝑗) (15)

In the value function, each rightsholder has a one-time binary decision to release a
song, 𝑎 𝑗 , and the value function is the variable profit 𝑉𝑃𝑗 from releasing the song, given
the song’s characteristics 𝑋𝑗 , the average characteristics of all songs𝒳, and the probability
the recommender system will recommend their song 𝜙, minus the fixed cost of releasing
the song 𝐹𝑗(𝑋𝑗) The profit function in the value function is given by equation 11, and the
fixed cost of releasing the song is given by 𝐹𝑗(𝑎 𝑗 , 𝑋𝑗).

Next, I confirm that this model satisfies the conditions for oblivious equilibrium. First,
the profit function 𝜋(𝑎 𝑗 , 𝑋𝑗 ,𝒳 , 𝜙) is increasing in own-product characteristics 𝑋𝑗 and de-
creasing in rival characteristics𝒳 through the choice probability (see equation 8). Second,
the draw of fixed costs 𝐹𝑗(𝑥 𝑗) is i.i.d. across songs, conditional on the song characteristics.
Third, because this is a onetime release decision, no investment function is necessary.
Fourth, instead of a Poisson process for entry, I limit my analysis to the number of songs
released that enter Spotify’s Top 200 each day, setting an upper bound on the number of
songs that can enter the market. It is also not possible to exit the market, because music
on a digital platform is a durable good.

I also confirm that the model satisfies the light-tail condition for oblivious equilibrium
to approximate a Markov Perfect Equilibrium. With thousands of songs being released
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daily, no single song dominates the market to the extent that other rightsholders need to
explicitly track its state. This approach is particularly appropriate given that rightsholders
in the music industry rarely have perfect information about the exact characteristics of
every competing song or the precise mechanisms of the recommender system.

Formally, in my model’s oblivious equilibrium, rightsholders have an oblivious entry
strategy 𝑎 𝑗 such that:

1. Rightsholder strategies maximize their oblivious value function: 𝑉𝑗(𝑎 𝑗 , 𝑋𝑗 ,𝒳 , 𝜙),
given consumer demand, the recommender system.

2. TheMarkov processes governing firm perception of the recommender system 𝜙 and
rival songs 𝒳 are stationary and consistent with the firm’s optimal strategy.

3. Rightsholders only enter the market if their expected profit exceeds the fixed cost of
releasing the song:

0.6

(
𝑇∑
𝑡=0

𝛿𝑡𝑅𝑡

(
𝑃(𝑖 listens to 𝑗 with characteristics 𝑋)∑
𝐾 𝑃(𝑖 listens to 𝑘 with characteristics 𝒳)

))
≥ 𝐹𝑗(𝑋𝑗) (16)

This closes the model, which I take to the data described in chapter 3.

5 Estimation

My estimation strategy has several stages:

1. Demand and Recommender System estimation

2. Markov Process estimation

3. Expected revenue calculation

4. Fixed cost estimation

5.1 Consumer Demand Estimation

In the first stage, I estimate consumer preferences and recommender system preferences
using the MSSD data. I separately estimate for consumers who receive songs from the
recommender system, and those who do not. Specifically, I estimate 𝜃1 = (𝛽, 𝛾, 𝜂) from
equations 4 and 7 in this stage. These characteristics include song characteristics, con-
sumer characteristics, and session fixed effects. The song and consumer characteristics
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are the ones detailed in section 2 and 3, and the session fixed effects are the position of
the song in the streaming session. For consumer preferences, I use a maximum likeli-
hood estimator over choice probabilities, following Train (2009). I identify my parameters
through variation in the choices each consumer faces at each position in the streaming ses-
sion. Because consumers received different songs at different positions in their streaming
session, and their skip value adaptively evolves based on their history, each observation
has significant variation in the characteristics space. This variation allows me to identify
the parameters of the model. Similarly, I estimate the recommender system parameters
using a maximum likelihood estimator over the probability a consumer completes a song.
It uses the same song and consumer characteristics as the demand model, but does not
include session fixed effects and has a different outcome variable (completion rather than
30-second listen).

5.2 Markov Process Estimation

In the second stage, I estimate the Markov processes governing the evolution of right-
sholder perception of the recommender system and rival songs. Specifically, I estimate
𝜃2 = (𝜈0, 𝜈1,𝜓0,𝜓1) in this stage. To construct the Markov process for the recommender
system, I use 𝜃1 to predict the probability the recommender system will surface a song in
Spotify’s top 200 to a consumer. I then compute the average of these probabilities across
all songs in the Top 200 each day. This object is the average probability the recommender
system surfaces a song to a consumer, which I denote as 𝜙𝑡 . I then estimate a SARIMAX
model for 𝜓0 and 𝜓1. I incorporate one lag and a drift term to capture the long-term trend
in the recommender system. For song characteristics, I compute the average characteris-
tics of all songs on Spotify’s Top 200 each day, and I estimate 𝜈0 and 𝜈1 as a Vector Autore-
gression (VAR) model. I use a VAR(1) model, because the average characteristics of songs
on Spotify’s Top 200 do not change rapidly from day to day, but do have long-term trends.
I also include a drift term to capture the long-term trend in the average characteristics of
songs on Spotify’s Top 200.

5.3 Expected Revenue Calculation

In the third stage, I compute the expected revenue for each song released between Jan-
uary 1, 2018, and September 30, 2018. This timeframe aligns with the MSSD data period
used for demand and recommender system estimation, ensuring consistency acrossmodel
components.

For each song, I construct a discounted stream of future revenues based on equation
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11, applying the estimated demand parameters (𝜃1) and Markov process parameters (𝜃2)
to predict how market characteristics and algorithmic exposure evolve over time. The
calculation accounts for both immediate post-release performance and the song’s long-
term revenue stream, which typically exhibits decay patterns as shown in Figure 6.

In computing the future revenues, I define the firm’s market share as follows:

𝑠 𝑗𝑡 =
ˆ𝑅𝐵𝑆 𝑗𝑡∑

𝑘
ˆ𝑅𝐵𝑆𝑘𝑡

=
𝑃(𝑖 listens to 𝑗 with characteristics 𝑋)∑
𝐾 𝑃(𝑖 listens to 𝑘 with characteristics 𝒳)

This share is the estimated streamshare of song 𝑗 in period 𝑡. 𝛿 is the firm’s discount
factor. 𝐹𝑗 is the fixed cost to release song 𝑗 on Spotify.

This share can be further simplified:

𝑠 𝑗𝑡 =
ˆ𝑅𝐵𝑆 𝑗𝑡∑

𝑘
ˆ𝑅𝐵𝑆𝑘𝑡

=
𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑗 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠

)∑
𝑘 𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑘 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠

)
+ 1 − 𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑗 + 𝛾𝑆𝑌𝑖 + 𝜂𝑆𝑠

)∑
𝑘 1 − 𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑘 + 𝛾𝑆𝑌𝑖 + 𝜂𝑆𝑠

)
Because the demandmodel is a conditional logit model, and the recommender system

is a logistic regression, I can express demand as choice probabilities, which makes con-
verting them into streamshares easier. For example, suppose there are two songs, 𝑗 and 𝑘,
and 1000 total listens. If 𝑗 has a choice probability (from being recommended or naturally
found) of 0.6, then it will receive 600 listens, and 𝑘 will receive 400 listens. This is the same
as saying that 𝑗 has a streamshare of 0.6, and 𝑘 has a streamshare of 0.4.

To calibrate the expected revenue calculation, I adopt the following procedure:
First, I establish a representative consumer profile using themodal characteristics from

theMSSDdata—specifically, a premiumsubscriber listeningduring eveninghours. These
consumer characteristics serve as inputs to both the demand and recommender system
components. I position the song at the beginning of the streaming session to normal-
ize the expected revenue estimates across songs, eliminating position-specific effects that
could introduce noise.

For rival songs in the streamshare denominator, I construct a competitive landscape
using the observed characteristics (𝒳) of songs in Spotify’s Top 200 on each song’s release
date. These rival characteristics serve as inputs to both the recommender system predic-
tion 𝜙 and the consumer choicemodel, through the demand function𝒳. To account for the
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dynamic nature of the market, I evolve these characteristics through the estimated VAR(1)
process and update the recommender system probabilities through the SARIMAX model
in each subsequent period.

A significantmethodological challenge arises because I only observe the Top 200 songs,
which represent a small fraction of Spotify’s approximately 40 million tracks available in
2018.25 To address this limitation, I implement a two-pronged approach:

First, I estimate the total daily streams on Spotify by combining platform-reportedmet-
rics with listening behavior from the MSSD. Specifically, I assume an average daily listen-
ing time of 125 minutes per user, based on industry reports from IFPI and Global Web
Insights.26 Dividing this by the average song duration from my dataset yields an estimate
of songs per user per day. Multiplying by Spotify’s reported active user count provides an
estimate of total daily streams. The ratio of observed Top 200 streams to this total provides
a scaling factor that I apply to revenue calculations.

Second, as a robustness check, I develop an alternative approach where each observed
song competes against the entire universe of songs on Spotify. This conservative approach
assumes all 40 million tracks have equal characteristics to the population mean of my ob-
served sample. This specification provides a lower bound on expected revenue estimates.

To account for discovery outside the recommender system, I model consumer aware-
ness as a function of time since release. In the main specification, I conservatively as-
sume that consumers become aware of songs through non-algorithmic channels (e.g., ra-
dio, word-of-mouth, social media) approximately twoweeks after release. This parameter
is calibrated using Spotify’s expected time for playlist editors to review music.27

The result of this procedure is a distribution of expected lifetime revenues for each song
inmy sample, capturing both the initial performance spike and the long-tail decay pattern
typical in the streaming market. These expected revenue estimates form the foundation
for the subsequent fixed cost estimation.

5.4 Fixed Cost Estimation

The fourth stage estimates the distribution of fixed costs associated with releasing songs
onto Spotify’s platform. This estimation is critical for understanding entry decisions by
rightsholders and represents a key contribution of this research.

I model fixed costs as following a lognormal distribution, which has several desirable
properties for this application. First, it constrains costs to be positive, aligning with eco-

25. Spotify 2018 Annual Report
26. IFPI, Global Web Insights
27. Spotify Support
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nomic reality. Second, it allows for right-skewed cost distributions, which matches in-
dustry accounts of occasional high-budget productions. Third, its parameters have clear
economic interpretations as location and scale.

The empirical challenge is that fixed costs are not directly observed. I address this using
a revealed preference approach: if a song entered the market, its expected revenue must
have at least covered its fixed cost. To operationalize this insight, I transform the expected
revenue estimates from the previous stage into fixed cost observations by scaling them
with industry-specific gross profit margins.

Specifically, I utilize Earnings Before Interest, Taxes, Depreciation, and Amortization
(EBITDA) margins for the major labels to scale expected revenue for their songs.28 For
songs from independent labels, I apply a standard 20% EBITDAmargin based on industry
benchmarks, because I lack direct data on these margins. This approach accounts for the
different profitability structures across label types while ensuring that the revealed fixed
costs are economically meaningful. Using EBITDA margins is particularly useful in this
context, because the goods are digital and have negligible marginal costs. As such, the
EBITDAmargin is a good proxy for the fixed costs of producing and releasing a song. It is,
however, a measure of accounting cost, so this approach results in a lower bound estimate
of fixed costs, as it does not directly include the opportunity costs of the rightsholder’s
time and effort. This may bias my fixed cost estimates downwards, but it is a reasonable
assumption given the lack of data on these opportunity costs.

Table 4 reports the EBITDA margins for the major labels:

Label EBITDA Margin
Sony 25.2%
Universal 23.2%
Warner 21.8%

Table 4: EBITDA Margins for Major Labels

To obtain the fixed cost estimates, I use the following transformation:

𝐹𝑗(𝑋𝑗) = 𝐸[𝑉𝑃𝑗(𝑋𝑗 ,𝒳 , 𝜙)] ·
(
1 − EBITDA Margin

)
(17)

The log-likelihood function for a single observation is:

ℓ 𝑗(𝜃) = −1
2

log(2𝜋𝜎2
𝑗 ) −

(log(𝐹𝑗) − 𝜇𝑗)2
2𝜎2

𝑗

(18)

28. Music Business Worldwide, Sony Music Earnings Report,Music Business Worldwide, UMG Earnings Report,
Music Business Worldwide, Warner Music Earnings Report
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The full log-likelihood aggregates across all observations:

𝐿(𝜃) =
𝑛∑
𝑖=1

ℓ 𝑗(𝜃) (19)

I maximize this function using the BFGS algorithm with numerical gradients. One
limitation of this approach is that it only identifies the distribution of fixed costs for songs
that successfully entered the market (i.e., appeared in Spotify’s Top 200). This potential
selection bias is mitigated by the fact that my sample includes a wide range of commercial
success levels, from major hits to songs that briefly appeared in the charts before exiting.
Additionally, the hierarchical model allows me to extrapolate to song types underrepre-
sented in the observed data.

This estimation results in a distribution of fixed costs for each song. When reporting
results and in computing the conunterfactuals, I use the median fixed cost for each song,
which will vary by song characteristics. This median fixed cost is the value of 𝐹𝑗(𝑋𝑗) in
equation 16.

6 Results

Tables 5 and 6 reports consumer demand estimates for both direct selection and recom-
mender system selection:

I focus on the odds ratios of the coefficients, which are more interpretable than the
raw coefficients. The odds ratios represent the multiplicative change in the odds of a song
being completed for a one-unit increase in the characteristic. For example, the odds ratio
on danceability in direct selection is 0.777, which means that a one standard deviation
increase in danceability decreases the odds of a song being an RBS by 22.3%.

The results reveal striking differences between how users interact with music through
direct selection versus recommender systems. In direct selection, song characteristics have
more modest effects, with most musical features showing relatively small coefficients.
Age has a small negative effect on direct demand, suggesting users slightly prefer newer
songs when choosing directly. Interestingly, acousticness and valence (emotional positiv-
ity) show positive linear terms but negative quadratic terms in direct selection, indicating
users prefer moderate levels of these characteristics when actively choosing music.

The recommender system demand parameters show notably larger magnitudes and
sometimes different directions of effects compared to direct selection. Most strikingly,
danceability and energy have much stronger positive effects in recommended songs (with
odds ratios of 3.287 and 4.552 respectively) compared to their modest or negative effects in
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio
(Robust Std. Error) (Robust Std. Error)

Age -0.0112*** 0.999 0.00161 1.000
(0.000492) (0.00168)

Acousticness 0.0604*** 0.661 0.0423*** 0.689
(0.000639) (0.00196)

Acousticness² -0.0456*** – -0.0378*** –
(0.000111) (0.000252)

Danceability -0.0402*** 0.777 0.150*** 3.287
(0.00112) (0.00362)

Danceability² -0.0112*** – 0.0651*** –
(0.000475) (0.00124)

Duration 0.00342*** 1.000 -0.00254 1.000
(0.000839) (0.00296)

Duration² -0.000722*** – 0.00759*** –
(0.0000857) (0.000446)

Energy -0.00595*** 1.605 -0.0648*** 4.552
(0.00132) (0.00437)

Energy² 0.0459*** – 0.161*** –
(0.000398) (0.00106)

Instrumentalness 0.00115** 0.738 -0.0368*** 0.672
(0.000523) (0.00158)

Instrumentalness² -0.0101*** – -0.00628*** –
(0.0000479) (0.000111)

Liveness 0.0160*** 0.811 0.00530*** 1.061
(0.000533) (0.00177)

Liveness² -0.00832*** – 0.000740*** –
(0.0000677) (0.000168)

Loudness 0.000418 1.000 0.0488*** 1.010
(0.00103) (0.00355)

Loudness² -0.00600*** – -0.0136*** –
(0.000103) (0.000361)

Mode 0.0308*** 1.031 0.0484*** 1.050
(0.001) (0.00313)

Speechiness 0.00132** 0.540 -0.00170 0.629
(0.000511) (0.00170)

Speechiness² -0.0115*** – -0.00829*** –
(0.0000612) (0.000149)

Tempo -0.00257*** 1.000 0.0184*** 1.000
(0.000935) (0.00289)

Tempo² -0.0149*** – 0.00976*** –
(0.000482) (0.00113)

Time Signature 0.0415*** 1.042 -0.0597*** 0.942
(0.00318) (0.0109)

Valence 0.0256*** 0.497 0.0155*** 0.995
(0.000749) (0.00234)

Valence² -0.0730*** – -0.00517*** –
(0.000263) (0.00059)

Model Statistics
Observations 148,822,923 31,238,428
�̄�2 0.018 0.284
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Consumer Demand Estimates — Song Characteristics

Demand within and outside the recommender system is similar, except for song energy, danceability, and
valence.
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio
(Robust Std. Error) (Robust Std. Error)

Time of Day
Morning 0.131*** 1.140 0.150*** 1.162

(0.00136) (0.00415)
Afternoon 0.102*** 1.107 0.121*** 1.129

(0.00121) (0.00371)
Night 0.0417*** 1.043 0.125*** 1.133

(0.00191) (0.00611)
Day of Week

Tuesday 0.0108*** 1.011 0.0289*** 1.029
(0.00180) (0.00538)

Wednesday 0.0163*** 1.016 0.0231*** 1.023
(0.00184) (0.00552)

Thursday 0.00907*** 1.009 0.0207*** 1.021
(0.00183) (0.00551)

Friday 0.00165 1.002 -0.0520*** 0.949
(0.00179) (0.00529)

Saturday -0.00358* 0.996 -0.0220*** 0.978
(0.00186) (0.00568)

Sunday -0.00389** 0.996 -0.0117** 0.988
(0.00184) (0.00566)

User Characteristics
Premium -0.121*** 0.886 0.116*** 1.123

(0.0014) (0.00465)
Model Statistics

Observations 148,822,923 31,238,428
�̄�2 0.018 0.284
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Consumer Demand Estimates — Contextual Characteristics

Demand within and outside the recommender system is similar, except for premium subscription status.
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direct demand. This suggests the recommender systemmay be effectively surfacing high-
energy, danceable songs that users might not have selected directly but end up enjoying.
The model fit �̄�2 is also substantially better for recommender system demand (0.284) com-
pared to direct demand (0.018), indicating that song characteristics are more predictive
of consumption when songs are recommended than when users select them directly. I
speculate this is because consumers selecting directly are considering far more than these
song characteristics (e.g., artists, albums, etc.) that I do not observe.

The contextual characteristics also reveal interesting patterns. Premium users are less
likely to engage with directly chosen songs (odds ratio 0.886) but more likely to engage
with recommended songs (odds ratio 1.123), suggesting they may be more trusting of or
receptive to recommendations. Theymight also bemore passive listeners, preferring to let
the recommender system guide their listening. Time of day effects are stronger for both
types of demand during morning and afternoon hours, with slightly larger coefficients
for recommended songs. Day of week effects show that both types of demand are higher
during midweek and lower on weekends, though the negative weekend effect is stronger
for recommended songs, particularly on Fridays (odds ratio 0.949).

Tables 7 and 8 reports the results for the recommender system:29

The recommender system’s song selection behavior differs notably from how users en-
gage with its recommendations. While both models show that age negatively influences
recommendations and consumption, the effect is much stronger in the demand model
(coefficient -0.0432 vs 0.00161), suggesting the system may be too aggressive in favoring
newer songs. Similarly, for characteristics like speechiness and instrumentalness, the sys-
tem shows strong positive preferences (odds ratios of 1.618 and 1.419 respectively) that
aren’t matched in user engagement, where these features actually show negative coeffi-
cients in the demand model. This mismatch surfaces potential areas where the recom-
mender system could be better aligned with user preferences.

The energy anddanceability parameters reveal particularly interestingdynamics. While
the demand model showed users strongly engage with high-energy, danceable recom-
mended songs (odds ratios of 4.552 and 3.287), the recommender system model shows
more modest positive effects for energy (odds ratio 1.345) and even a slight negative co-
efficient for danceability. This suggests the system may be under-recommending songs
with these characteristics relative to user preferences. The quadratic terms for many char-
acteristics also differ between the models, indicating that the system’s understanding of
optimal levels for these features might not perfectly align with what drives user engage-
ment.
29. Introducing interactions does not materially affect many of these estimates.
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Dependent variable: Song Completion
Estimate Odds Ratio

(Std. Error)
Age -0.0432*** 0.995

(0.000168)
Acousticness 0.0395*** 1.058

(0.000280)
Acousticness² -0.0065*** –

(0.000189)
Danceability -0.0530*** 1.021

(0.000414)
Danceability² 0.0181*** –

(0.000439)
Duration -0.2395*** 0.998

(0.000322)
Duration² 0.0161*** –

(0.0000999)
Energy 0.0178*** 1.345

(0.000454)
Energy² 0.0222*** –

(0.000383)
Instrumentalness 0.0304*** 1.419

(0.000661)
Instrumentalness² 0.0059*** –

(0.000162)
Liveness -0.0307*** 1.192

(0.000286)
Liveness² 0.0098*** –

(0.000106)
Loudness -0.0235*** 0.995

(0.000430)
Loudness² 0.0022*** –

(0.0000996)
Mode 0.0113*** 1.011

(0.000329)
Speechiness -0.0815*** 1.618

(0.000267)
Speechiness² 0.0199*** –

(0.0000847)
Tempo -0.0076*** 1.000

(0.000308)
Tempo² 0.0212*** –

(0.000503)
Time Signature 0.0336*** 1.116

(0.001081)
Valence 0.0345*** 0.943

(0.000254)
Valence² -0.0160*** –

(0.000260)
Model Statistics

Observations 180,061,351
Pseudo 𝑅2 0.006733
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Recommender System Estimates — Song Characteristics

The recommender system prioritizes shorter, more energetic songs with a standard time signature
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Dependent variable: Song Completion
Estimate Odds Ratio

(Std. Error)
Time of Day

Morning 0.1531*** 1.165
(0.000437)

Afternoon 0.0963*** 1.101
(0.000392)

Night 0.1706*** 1.186
(0.000624)

Day of Week
Tuesday -0.0082*** 0.992

(0.000570)
Wednesday -0.0088*** 0.991

(0.000584)
Thursday -0.0177*** 0.982

(0.000583)
Friday -0.0215*** 0.979

(0.000571)
Saturday -0.0166*** 0.984

(0.000597)
Sunday -0.0061*** 0.994

(0.000591)

User Characteristics
Premium -0.0673*** 0.935

(0.000434)
Model Statistics

Observations 180,061,351
Pseudo 𝑅2 0.006733
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Recommender System Estimates — Contextual Characteristics

Premium consumers are less likely to complete songs

43



The contextual effects show some alignment but also key differences. The time-of-day
patterns are similar, with both demand and consumption showing higher activity during
morning and night hours. However, the day-of-week patterns differ notably: while the
demand model showed higher engagement during midweek, the recommender system
model shows consistently negative coefficients for all days relative to Monday. For pre-
mium users, both models show negative effects (odds ratios of 0.935 for provision and
0.886 for demand), suggesting the systemmay be appropriately calibrated in how it treats
premium status. Intuitively, premium subscribers, facing no ad interruptions, may be
more likely to skip songs and search, whereas ad-supported users would prefer to avoid
ads, and take a more passive approach to listening. The much lower pseudo-R² for the
recommender system model (0.007 vs 0.284) implies that these observable characteristics
explain far less of the system’s recommendations than they do user engagement.

Table 9 reports the results for the song characteristic Markov processes:
This VAR reports strong, stationary processes for each song characteristic with respect

to its own lag. All own-lag coefficients are statistically significant, and all of them are
less than 0.95. The drift terms are statistically significant, but they are all very close to
zero, further supporting my argument that the processes are stationary. The constant
terms are sometimes significant, and most of the cross-characteristic lags are statistically
insignificant. This suggests that the processes are relatively independent of each other.

Table 10 reports the results for the recommender system Markov process estimation:
This SARIMAX model reports that the recommender system is relatively stable, with

a high persistence term, but not so high as to imply that the system is nonstationary. The
drift term is statistically significant, but close to zero, further arguing that the system is
stationary.

Figure 9 plots the distribution of expected revenue for songs released in 2018 that en-
tered Spotify’s top 200 at least once:

These songs have an expected revenue ranging from $20,000 to $500,000, with a mean
at $213,000. The distribution is similar under my alternative approach, but with much
lower amounts, as the rival songs include all songs on the platform. I compute a mean
expected revenue of $60.09 for all songs.

My fixed cost estimation produces estimates of the location (𝜇) and (𝜎) parameters of
the lognormal fixed cost distribution as a function of song characteristics.

Table 11 reports the results of the fixed cost estimation:
The location model results reveal several key determinants of fixed costs in music

production. Duration shows a significant negative linear effect (-0.041), indicating that
longer songs generally cost less to produce. Among audio features, instrumentalness has
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Dependent variable: Predicted Probability (�̂�𝑡)
�̂�𝑡−1 0.734∗∗∗

(0.019)
Drift 0.000∗∗∗

(0.000)
Constant 0.092∗∗∗

(0.007)
Observations 1826

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Markov Process Estimation for Recommender System

The recommender system has a high, statistically significant, persistence term, suggesting that it is relatively
stable.

Figure 9: Expected Revenue of Songs Released in 2018 that Entered Spotify’s Top 200

These songs have a mean expected revenue of $213,000.

the largest negative effect (-0.056), suggesting that instrumental tracks may be less expen-
sive to produce, possibly due to lower costs associated with not needing vocalists. There
are also significant differences across record labels — Universal and Warner songs show
higher average fixed costs (coefficients of 0.062 and 0.038 respectively) while Sony songs
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Location (𝜇) Scale (𝜎)
Estimate Estimate

(Std. Error) (Std. Error)
Intercept 5.091*** -1.945***

(0.013) (0.062)
Audio Features

Acousticness 0.017*** 0.027
(0.006) (0.028)

Instrumentalness -0.056** 0.121**
(0.022) (0.060)

Liveness -0.008 0.153***
(0.006) (0.028)

Speechiness -0.008* -0.155***
(0.004) (0.023)

Loudness -0.009 -0.272***
(0.008) (0.042)

Duration
Duration -0.041*** -0.098***

(0.008) (0.034)
Duration² 0.010 0.240***

(0.008) (0.033)
Record Label

Sony -0.052*** 0.101
(0.015) (0.086)

Universal 0.062*** -0.075
(0.012) (0.068)

Warner 0.038** 0.273***
(0.017) (0.087)

Model Statistics
Observations 1,067
𝑅2 0.108 0.971
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 11: Fixed Cost Parameter Estimates

Song characteristics and label fixed effects significantly affect the distribution of fixed costs.

have lower costs (-0.052), which could reflect different production strategies or accounting
practices across labels.

The scale model results reveal interesting patterns in cost variability. Warner shows
significantly higher cost variability (0.273), suggesting they may take more risks in pro-
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Figure 10: Distribution of Estimated Fixed Costs

These songs have a median fixed cost of $170,000.

duction budgets compared to Universal and Sony, whose variance effects are not statis-
tically significant. Among audio features, liveness and instrumentalness are associated
with higher cost variability (0.153 and 0.121), while speechiness and loudness are asso-
ciated with lower variability (-0.155 and -0.272). This suggests that live-recording and
instrumental elements introduce more uncertainty into production costs, while speech
elements and production choices around loudness may follow more standardized cost
structures. Duration shows a U-shaped relationship with cost variability, with the nega-
tive linear term (-0.098) and positive quadratic term (0.240) indicating thatmedium-length
songs have the most predictable costs.

I use these estimates to compute the lognormal distribution for each song, and report
the median 𝜇 for each song as its fixed cost.

Figure 10 plots the distribution of median fixed costs predicted by the model:
The fixed cost of releasing a song on Spotify ranges from $120,000 to $220,000, with a

median of $170,000. In comparison, the fixed cost under my alternative approach (com-
peting with all songs) is lower, with a median of $82.10.

My estimated median fixed cost for songs in the top 200 is close to a report from Chace
(2011), which estimated the production and recording costs of Rihanna’s “Man Down” at
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$78,000 in 2011 dollars ($88,000 in 2017 dollars). Themedian formy alternative approach is
also close to the fixed cost estimate in Aguiar andWaldfogel (2018). They find that, in their
imperfect foresight model, the fixed cost is $18.97 ($20.92 in 2017 dollars), approximately
$60 less than my estimate. Several factors explain this difference. First, their model only
looks at the revenue generated by the song in 2011. I model songs more dynamically,
looking at revenue generated in the first three years of release. Additionally, they estimate
a single fixed cost, assuming the fixed cost is the lowest expected revenue for all songs
released in a year. In contrast, I estimate a distribution of fixed costs. Moreover, they
estimate the fixed cost for a digital release (e.g., on iTunes), whichmay have different fixed
costs than a release on Spotify.

7 Counterfactual Analysis

Having estimated demand for song characteristics, the recommender system preferences,
and the fixed cost to releasing a song onto Spotify, I now turn to the counterfactual analy-
sis that can answer the question this paper poses: whether recommender systems have af-
fected the kind of music record labels are releasing. To isolate the impact of recommender
systems specifically, I conduct two counterfactuals.30 In the first, I construct a random
recommender system, rather than one which relies on song and consumer characteristics.

7.1 Random Recommendations

Intuitively, this random recommender is akin to having no recommender system at all,
insofar as the recommendations will be pure noise. It also effectively simulates a naive
search process, wherein consumers sample new songs from a uniformly random distribu-
tion. I implement this counterfactual by using the following process:

1. Draw 500 consumers and give them preferences from the demand estimates. I sam-
ple from the distribution of consumer characteristics in the data to construct values
for those parameters.

2. Simulate a streaming session of 15 songs for each consumer, drawing from songs
released before 2018.

3. Take the average of those songs to generate the utility of skipping a song.

30. I also conduct a simulated counterfactual with an oracular recommender system. See the appendix for
details.
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Figure 11: Counterfactual Expected Profit — Random Recommendations

Many songs become unprofitable when random recommendations are used.

4. Provide a new release to each consumer, and compute the choice probability of lis-
tening to the song.

5. Repeat this process for all songs released in the first three quarters of 2018.

6. Compute the expected revenue generated for these new releases, assuming each
song has a 25% chance of being recommended, and compare it to the estimated rev-
enue generated by the model.

First, I compare average expected profit for songs. Figure 11 reports the results of this
comparison:

Each observation in this figure represents a song released in the first three quarters of
2018. Note that some of the estimated net profits are negative, because the median fixed
cost estimated by the parameters of the lognormal distribution is higher than the expected
revenue. Intuitively, it is likely that the realized fixed cost for those songs is lower than
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Figure 12: Counterfactual Duration — Random Recommendations

Unprofitable songs are shorter and more homogeneous than profitable songs.

the median fixed cost. Many songs become unprofitable when random recommendations
are used. Indeed, of the 1053 songs I observe that were released in the first three quarters
of 2018, 274 (26%) are unprofitable. For those songs that are profitable, their gross profit
margin is 11.9%, compared to the average of 20% observed in the industry.

I now turn to some song characteristic results and welfare implications of my counter-
factual analysis. Figure 12 reports the average duration of songs between profitable and
unprofitable songs.

The average duration of songs of profitable songs is 217 seconds, and the average du-
ration of unprofitable songs is 184 seconds. This difference is significant at the 5% level.
Moreover, the unprofitable songs are more homogeneous, as the standard deviation of
duration is 1.75 seconds, compared to 2.61 seconds for profitable songs. The difference
in distributions is also significant at the 5% level. This suggests that introducing recom-
mender systems allows shorter, more homogeneous songs to enter the market and find
an audience.

Song valence represents another example of the differences between profitable and
unprofitable songs. Valence is ameasure of the emotional positivity of a song, with higher
values indicating more positive emotions. Figure 13 reports the average valence of songs
between profitable and unprofitable songs.
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Figure 13: Counterfactual Valence — Random Recommendations

Unprofitable songs are less positive-sounding than profitable songs.

The average valence of profitable songs is 0.457, and the average valence of unprofitable
songs is 0.385. This difference is significant at the 1% level. Moreover, the distribution of
energy is very clearly right-shifted for unprofitable songs, compared to profitable songs.

Table 12 reports the average values of other song characteristics for profitable and un-
profitable songs, the difference in means, and the difference in distributions (as evaluated
by a KS-Test):

The data reveals several striking differences between profitable andunprofitable songs’
musical characteristics under random recommendations, with the Kolmogorov-Smirnov
tests indicating significantly different distributions for many key features (𝑝 < 0.001).
Most notably, profitable songs are significantly longer, with an average duration of about
217 seconds compared to 184 seconds for unprofitable songs — a 33-second difference
that reflects fundamentally different distributions in song length (𝑝 ≈ 0). Similarly, the
distributions of both danceability and valence differ significantly between profitable and
unprofitable songs (both 𝑝 ≈ 0), with profitable songs showing higher values in both
measures (danceability: 0.723 vs. 0.619; valence: 0.457 vs. 0.385). The mode difference of
-0.166 also reflects distinctly different distributions (𝑝 ≈ 0), indicating profitable songs are
systematically more likely to be in a major key.

While some characteristics show differences in means, their distributional differences
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Feature Profitable Unprofitable Diff KS-Test P-Value
Duration (s) 216.872 183.730 -33.143*** 0.0000

(1.751) (2.605)
Tempo 125.093 123.233 -1.860 0.0184

(1.038) (2.030)
Energy 0.628 0.639 0.011 0.0015

(0.006) (0.007)
Danceability 0.723 0.619 -0.104*** 0.0000

(0.005) (0.007)
Valence 0.457 0.385 -0.073*** 0.0000

(0.007) (0.013)
Acousticness 0.190 0.251 0.061*** 0.0004

(0.007) (0.017)
Instrumentalness 0.007 0.012 0.005 0.9359

(0.002) (0.005)
Liveness 0.184 0.167 -0.017 0.0209

(0.005) (0.008)
Speechiness 0.162 0.163 0.001 0.0212

(0.005) (0.010)
Loudness -6.288 -6.603 -0.315 0.0269

(0.084) (0.145)
Mode 0.641 0.474 -0.166*** 0.0000

(0.017) (0.030)

Table 12: Counterfactual Song Characteristics — Random Recommendations

Unprofitable songs are shorter, less danceable, and less positive-sounding than profitable songs.

are less pronounced. For instance, despitemeandifferences in tempo, liveness, and speech-
iness, their KS test p-values (0.0184, 0.0209, and 0.0212 respectively) suggest more sub-
tle distributional differences that might not be economically meaningful. Most notably,
instrumentalness shows virtually identical distributions between profitable and unprof-
itable songs (KS p-value = 0.9359), despite a small difference in means. Overall, this com-
parison suggests that the recommender systems allows for shorter, more homogeneous,
and more energetic songs to enter the market.

Finally, I turn to the welfare implications of my counterfactual analysis. I compute the
consumer surplus generated by all the songs in the release set, as well as the set of surviv-
ing songs, by taking the log-sum of the exponentiated utility, following Anderson, Palma,
and Thisse (1992). Formally, I define consumer surplus with the following equation:
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𝐶𝑆 = log

(
𝑁∑
𝑖=1

exp
(
𝛽𝑋𝑗 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠

))
(20)

Here, 𝑁 represents the number of songs in the set, rather than the binomial skip-listen
decision. Note that this measure of consumer surplus is in utils, as there is no price coef-
ficient against which to scale the results.

I find that consumer surplus is 3.9% higher when targeted recommender systems are
used, compared to when random recommendations are used. Restated, random recom-
mender systems result in a 3.8% decrease in consumer surplus. This suggests that recom-
mender systems have increased consumer surplus by allowing for more songs to enter the
market, and for consumers to find songs that they enjoy more easily.

7.2 Popular Recommendations

The second counterfactual analysis I conduct is a popular recommender system. It is sim-
ilar to placing a ban on using consumer data for recommendations, and relying only on
the popularity of songs. This recommender system also replicates the market environ-
ment that existed prior to Spotify, when consumers would purchase singles on iTunes. At
the time, the iTunes store did not have a recommender system; instead, it showed users
what the top-selling singles and albums were. I replicate this by recommending songs in
proportion to their listening shares.

I implement this counterfactual in the following way:

1. Draw 500 consumers and give them preferences from the demand estimates. I sam-
ple from the distribution of consumer characteristics in the data to construct values
for those parameters.

2. Simulate a streaming session of 15 songs for each consumer, drawing from songs
released before 2018.

3. Take the average of those songs to generate the utility of skipping a song.

4. Provide a new release to each consumer, and compute the choice probability of lis-
tening to the song.

5. Repeat this process for all songs released in the first three quarters of 2018.

6. Compute the share of listens by release day, and set the recommendation probability
of each song to be equal to its listening share.
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Figure 14: Counterfactual Expected Profit — Popular Recommendations

A superstar effect occurs with popular recommendations: many songs become unprofitable in expectation,
but some become highly profitable.

7. Compute the expected revenue generated for these new releases and compare it to
the estimated revenue generated by the model.

First, I compare average expected profit for songs. Figure 14 reports the results of this
comparison:

Each observation in this figure represents a song released in the first three quarters of
2018. Whereas random recommendations reduced the expected profit of all songs, popu-
lar recommendations help some songs and hurt others. On average, however, songs are
worse off when popular recommendations are used. Indeed, of the 1053 songs I observe
that were released in the first three quarters of 2018, only 291 (27.6%) are profitable. For
those songs that are profitable, their gross profit margin is 41.4%, compared to the average
of 20% observed in the industry.

I now turn to some song characteristic results and welfare implications of my counter-
factual analysis. Figure 15 reports the average duration of songs between profitable and
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Figure 15: Counterfactual Duration — Popular Recommendations

Unprofitable songs have the same length as profitable songs under popular recommendations.

unprofitable songs.
The average duration of songs of profitable songs is 217 seconds, and the average du-

ration of unprofitable songs is 205 seconds. This difference is significant at the 1% level.
Table 13 reports the average values of other song characteristics for profitable and un-

profitable songs, the difference in means, and the difference in distributions (as evaluated
by a KS-Test):

The data shows more modest differences between profitable and unprofitable songs
under popular recommendations. The most notable difference remains duration, with
profitable songs being approximately 12 seconds longer on average (217.3 vs. 205.5 sec-
onds), and the Kolmogorov-Smirnov test (𝑝 = 0.0091) confirming significantly different
distributions of song lengths. Danceability also shows a statistically significant difference
both in means and distributions (𝑝 = 0.0004), though the economic significance is rela-
tively small with profitable songs scoring 0.712 versus 0.689 for unprofitable ones. Energy
levels show a significant mean difference of 0.030 higher for unprofitable songs, though
the distributional difference is marginally significant (𝑝 = 0.0594).

Notably, many musical characteristics show no significant differences in either means
or distributions between profitable and unprofitable songs. Features such as valence,
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Feature Profitable Unprofitable Diff KS-Test P-Value
Duration (s) 217.318 205.454 -11.864*** 0.0091

(2.986) (1.929)
Tempo 123.786 124.777 0.991 0.0505

(1.646) (1.122)
Energy 0.609 0.639 0.030*** 0.0594

(0.010) (0.005)
Danceability 0.712 0.689 -0.023** 0.0004

(0.009) (0.005)
Valence 0.444 0.436 -0.008 0.3223

(0.012) (0.008)
Acousticness 0.211 0.206 -0.005 0.4172

(0.014) (0.008)
Instrumentalness 0.009 0.008 -0.000 0.2917

(0.003) (0.002)
Liveness 0.178 0.181 0.002 0.3646

(0.007) (0.005)
Speechiness 0.150 0.166 0.016* 0.4404

(0.007) (0.005)
Loudness -6.441 -6.370 0.070 0.9672

(0.148) (0.084)
Mode 0.643 0.578 -0.064 0.3309

(0.028) (0.018)

Table 13: Counterfactual Song Characteristics — Popular Recommendations

Unprofitable songs are shorter, less danceable, and more energetic.

acousticness, instrumentalness, liveness, and loudness all have highKS test p-values (rang-
ing from 0.32 to 0.97), suggesting very similar distributions between the two groups. Even
tempo, which differs by about 1 BPM, shows onlymarginally significant distributional dif-
ferences (𝑝 = 0.0505). Overall, popular recommendations appear to have a more modest
impact on song characteristics compared to random recommendations, with only dura-
tion and danceability showing significant differences between profitable and unprofitable
songs.

Figure 16 plots the distribution of song danceability for profitable and unprofitable
songs:

The profitable songs are more danceable than unprofitable songs, and the entire dis-
tribution of danceability is right-shifted for profitable songs.

Finally, I turn to the welfare implications of my counterfactual analysis. I find that con-
sumer surplus is 14.6% higher when targeted recommender systems are used, compared
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Figure 16: Counterfactual Danceability — Popular Recommendations

Unprofitable songs are less danceable than profitable songs under popular recommendations.

to popular recommendations. Restated, random recommender systems result in a 12.9%
decrease in consumer surplus.

8 Conclusion

As recommender systems become increasingly embedded across digital platforms, under-
standing their impact on both consumer demand and producer decisions is crucial. This
dissertation has developed a structural model of the music streaming industry to quantify
how algorithmic recommendations influence music production and shape the evolving
sound of popular music. The music industry has historically been at the forefront of tech-
nological disruption, making it an ideal setting to examine how recommender systems
may affect other content-driven industries.

Using detailed data on streaming sessions and song characteristics from 2018, I find
compelling evidence that recommender systems have fundamentally altered music pro-
duction. The introduction of algorithmic recommendations appears correlated with in-
centives for the release of shorter, more sonically homogeneous songs optimized for plat-
form objectives. These changes reflect a strategic response by producers to the recom-
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mender system’s preferences rather than shifting consumer tastes, as demonstrated by
my robustness analysis.

My counterfactual analyses reveal importantwelfare implications. While recommender
systems may reduce musical diversity in some dimensions, they have simultaneously en-
abled more songs to profitably enter the market. I estimate that personalized recom-
mendations increase consumer surplus by approximately 4% compared to random rec-
ommendations, suggesting that despite homogenization concerns, these systems create
meaningful welfare gains by helping consumers discover music aligned with their pref-
erences. A critical insight is the potential misalignment between recommender system
objectives (like maximizing completed listens, as suggested by my recommender system
model estimation) and broader consumer preferences or welfare metrics. This divergence
stems partly from potentially conflicting incentives between platforms and rightsholders
regarding how engagement is measured and rewarded. This dynamic also has complex
implications for artists. While increased entry enabled by recommenders benefits some,
the potential homogenization towards characteristics favored by the algorithm could dis-
advantage artists whose work deviates from these trends, potentially impacting discover-
ability and earnings, particularly for niche or independent creators. The popularity-based
recommendation counterfactual further demonstrates that a system promoting only the
most widely-consumed songs would generate a pronounced superstar effect, increasing
profitability for a small subset of content while reducing overall consumer welfare signif-
icantly (by 13% in the counterfactual) compared to personalized recommendations.

These findings have significant implications for platform regulation and competition
policy. As policymakers scrutinize algorithmic curation, my results highlight both the ef-
ficiency gains from personalized recommendations and their potential to shape creative
production andmarket structure. The framework developed here, including the fixed cost
estimates of approximately $170,000 per commercially viable song entering the Top 200,
could inform antitrust analysis where algorithmic recommendations mediate between
producers and consumers. Specific regulatory avenues warrant consideration, potentially
including mandating greater transparency into recommendation algorithms’ objectives
and the data inputs used, exploring ’algorithmic disgorgement’ or other remedies in an-
titrust cases involving biased recommendations, or establishing auditing frameworks to
assess algorithmic impact on market diversity and creator inequality. Furthermore, the
fixed cost estimates inform discussions concerning market entry barriers and could shape
policies aimed at fostering a diverse and sustainable creator ecosystem.  

For platforms, these results suggest opportunities to better align recommendation al-
gorithms with both consumer preferences and business objectives. For producers, under-
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standing how algorithms evaluate content characteristics provides strategic guidance for
product design. The documented gap between what consumers enjoy and what recom-
mender systems prioritize represents an opportunity for competitive differentiation.

Several promising avenues exist for future research. First, crucially, extending the em-
pirical analysis with more recent data is needed to capture the rapid evolution of algo-
rithms, user behavior (e.g., influenced by platforms like TikTok), and the music market
since the 2018 dataset used here. Second, extending this model to other content platforms
is a promising avenue. Contrasting findings from music streaming with platforms dom-
inated by short-form, algorithm-driven user-generated content (like TikTok or YouTube
Shorts) versus those with longer-form, professionally curated content (like Netflix) could
yield critical insights into how algorithmic mediation differs across digital ecosystems.
Third, incorporating random coefficients would enrich the consumer demand structure
and better capture preference heterogeneity. Fourth, endogenizing platform decisions
regarding pricing and recommendation algorithms would enable deeper analysis of plat-
form market power and strategic manipulation of recommendations. Furthermore, ex-
amining the interplay between recommendation systems and the rise of generative AI in
music creation presents a vital new research frontier: how will algorithms evaluate and
surface AI-generated content, and will this accelerate or counteract the trends in charac-
teristic optimization identified here? Finally, examining more directly how recommender
systems affect market concentration and creator inequality remains an important ques-
tion.

An emerging frontier for future research is the interaction between recommender sys-
tems and AI-generated music. As tools like Suno and Udio make music creation more
accessible and potentially more algorithmically optimized from inception, the feedback
loop between recommendation and production could become even tighter. This may ac-
celerate the homogenization trends identified in this research, or paradoxically, enable
greater diversity through lower production costs. Understanding this dynamic will be
crucial as generative AI becomes more prominent in creative industries.

This research contributes to our understanding of how algorithmic systems shapemar-
kets and creative production in the digital economy. As these systems becomemore preva-
lent across industries, the methods and insights developed here can inform both manage-
rial decisions and policy discussions regarding the regulation of digital platforms and
their recommendation algorithms.
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Appendix 1: Reduced Form Analysis

To movivate my structural model, I conduct reduced-form analysis of the relationship be-
tween song length and changes in music formats. Using songs that charted on Billboard’s
Hot 100 from 1940 to 2022, I estimate the following regression:

Duration𝑗 = 𝛽0 + 𝛽11{Vinyl}𝑡 + 𝛽21{Cassette}𝑡 + 𝛽31{CD}𝑡
= 𝛽41{Digital}𝑡 + 𝛽51{Streaming}𝑡 + 𝛽61{Recommenders}𝑡 + 𝜖 𝑗

(21)

Each independent variable is an indicator variable for whether the particular format
or technology was available at the time of the song’s release. Table 14 reports the results
of this regression.

These results are all statistically significant at the 1% level, and are negative for both
the introduction of streaming services in the US in 2011 (as exemplified by Spotify), and
the deployment of recommender systems on Spotify in 2015 (after their acquisition of
Echo Nest). Combined, the introduction of these technologies are correlated with a 40-
second decrease of average song length for songs that make it to Billboard’s Hot 100, when
comparing songs released in 2018 to songs released in 2010.

In addition to the above regression, I also conducted structural break tests to deter-
mine whether the introduction of streaming services and recommender systems caused
a structural break in song length. Structural break tests are statistical procedures used
to determine if the parameters of an economic or statistical model have changed signifi-
cantly at some point (or points) in time within the sample period. A “structural break”
or “structural change” implies that the underlying relationship between the variables in
the model is not stable over the entire dataset. In the context of technology introduction,
these tests are valuable because the adoption or implementation of a new technology can
fundamentally alter economic relationships.

When the potential break date is known a priori, as is the case with the specific in-
troduction dates of technologies, the Chow Test is the appropriate procedure. The Chow
test formally compares the goodness-of-fit of a single regressionmodel estimated over the
entire sample period against the combined goodness-of-fit of separate regression models
estimated on the sub-samples before and after the hypothesized break date. Specifically, it
tests the null hypothesis that the coefficients in the regression model are the same across
the different sub-periods against the alternative hypothesis that at least one coefficient
differs.

To investigate whether the introduction of Spotify in 2011 and recommender systems
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Dependent variable: Duration (m)
Recommendations -0.394∗∗∗

(0.081)
Streaming Services -0.207∗∗∗

(0.047)
Digital Sales -0.343∗∗∗

(0.052)
CD 0.882∗∗∗

(0.141)
Cassette 0.824∗∗∗

(0.142)
Vinyl -0.349∗∗∗

(0.049)
Intercept 3.023∗∗∗

(0.020)
Observations 6879
N. of songs 6276
N. of years 84
𝑅2 0.237
Residual Std. Error 0.522 (df=6872)
F Statistic 355.734∗∗∗ (df=7; 6872)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard Errors clustered at the year level

Table 14: Reduced Form Regression Results

The introduction of streaming services correlates to a 12-second decrease in song length, while the intro-
duction of recommender systems correlates to a 24-second decrease in song length.

in 2015 led to structural changes in the relationship described by the Billboard data, I
conducted Chow tests at these two known break dates.

The regression model I used for the Chow test is the following:

Duration𝑗𝑡 = 𝛽0 + 𝛽1Year𝑗𝑡 + 𝜖 𝑗𝑡 (22)

First, I tested for a structural break corresponding to the introduction of Spotify in 2011.
The Chow F-statistic was calculated as 51.99, with an associated p-value of 0.00. Based on
this result, I reject the null hypothesis of parameter stability at the 1% significance level
for this first break point.

Second, I tested for a structural break corresponding to the introduction of recom-
mender systems in 2015. The Chow F-statistic was calculated as 46.15, with an associated
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p-value of 0.00. Based on this result, I reject the null hypothesis of parameter stability at
the 1% significance level for this second break point.

This analysis is consistent with anecdotal evidence of changes in songs since the in-
troduction of streaming services, but it does not establish a causal relationship, or the
mechanism by which these changes occur. For that I construct a structural model of the
industry.

Appendix 2: Robustness Check of Demand Preferences over
Time

Throughout this paper, I assume that consumer preferences are fixed over time. It is rea-
sonable to claim, however, that these preferences can fluctuate over time, and that firms
are responding to these fluctuations as well as the recommender system. To test this as-
sumption, I conduct two robustness checks on consumer-preferences: a reduced-form
difference-in-differences analysis, and a discrete choice model with time-varying coeffi-
cients.

For both of these analyses, I usemy Spotify charts data, and examine the choice to listen
as a function of song characteristics and time fixed effects. In my reduced-form specifi-
cation, I interact song length with a time trend, to see the impact of these variables on
the number of streams a song receives. In my discrete choice model, I assume consumers
choose one song on the Spotify charts to listen to, and I estimate the probability they listen
to a song as a function of song characteristics and time fixed effects.

8.1 Reduced Form Analysis

I estimate the following equation:

𝑙𝑜𝑔(Streams𝑗𝑡) = 𝛼 + 𝛽1Duration𝑗 + 𝛽2Time Trend𝑡
+ 𝛿(Duration × Time Trend)𝑗𝑡 + 𝛾𝑋𝑗 + 𝜂𝑡 + 𝜖 𝑗𝑡

(23)

Here, Streams𝑗𝑡 is the number of streams song 𝑗 receives on day 𝑡, Duration𝑗 is the
duration of song 𝑗, and Time Trend𝑡 is the time trend for day 𝑡. Our coefficient of interest
is 𝛿, which captures the impact of song length on streams over time. I control for other
song characteristic and week-of-year fixed effects.

Table 15 reports the results of this regression:
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Dependent variable: 𝑙𝑜𝑔(Streams)
Intercept 12.605∗∗∗

(0.008)
Duration -0.027∗∗∗

(0.002)
Duration2 0.0001

(0.000)
Time Trend 0.00003∗∗∗

(0.000)
Duration × Time Trend 0.00002∗∗∗

(0.000)
Observations 364,081
𝑅2 0.019
Adjusted 𝑅2 0.019
F Statistic 97.228∗∗∗ (df=73; 364007)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Other song characteristics and week fixed effects omitted for brevity. See Appendix

Table 15: Difference-in-Differences Results

Consumer preferences are changing over time, but not at an economically meaningful rate.

I find that the coefficient on the interaction is positive and significant at the 1% level,
suggesting that consumer preferences are changing over time. Specifically, this result sug-
gests that consumers are becoming more likely to listen to longer songs over time. This
effect, however, is not economically meaningful. The coefficient on the interaction term
is 0.00002, suggesting that a one-day change in the data, holding duration constant, in-
creases streams by 0.002%. From the beginning to the end of the five-year sample period,
this effect only amounts to an approximately 3% increase in streams.

This analysis, however, does not control for the growth in Spotify’s user base, which
could also be driving this effect. A demand model with time-varying coefficients can bet-
ter control for this effect.

8.2 Discrete Choice Model

I construct a discrete-choice model where consumers choose one song on Spotify to listen
to. They can select from among the top 50 songs on Spotify in a given week, with any
songs outside the top 50 (positions 50-200) being an outside option. This captures choice
on Spotify’s Weekly Top 50 chart.
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Dependent variable: 𝑙𝑜𝑔(Market Share) − 𝑙𝑜𝑔(Outside Share)
Duration −0.487∗∗∗

(0.059)
Duration2 0.006

(0.005)
Duration × Time Trend 0.003∗∗∗

(0.0003)
Observations 10,350

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Other song characteristics and month fixed effects omitted for brevity. See Appendix

Table 16: Discrete Choice Model Results

Consumer preferences are changing over time, but not at an economically meaningful rate.

Consumers have the following utility function:

𝑈𝑖 𝑗𝑡 𝑖 = 𝛼 + 𝛽1Duration𝑗+
+ 𝛿(Duration × Time Trend𝑗𝑡) + 𝛾𝑋𝑗 + 𝜂𝑡 + 𝜖𝑖 𝑗𝑡

(24)

Here,𝑈𝑖 𝑗𝑡 is the utility consumer 𝑖 receives from listening to song 𝑗 on day 𝑡, and 𝛽𝑖1 is
the preference for song length. As before, 𝛿 captures the impact of song length on streams
over time. My other control variable includesmonth fixed effects, to control for seasonality
in music listening.

I estimate this model using PyBLP, instrumenting duration with characteristic of rival
songs.

Table 16 reports the results of this regression:
Similar to the difference-and-difference analysis, I find that the coefficient on the in-

teraction term positive, significant, but not economically meaningful. This coefficient has
a less direct interpretation, as it is part of a discrete choice model, rather than a reduced-
form regression.

In both cases, I find that consumer preferences for song duration are increasing over
time, but not at an economically meaningful rate. Additionally, this movement is positive,
rather than negative, suggesting that the trend towards shorter songs is not driven by
consumer preferences, but rather by other factors. This result suggests that the model’s
assumption of fixed consumer preferences is reasonable, and that the model is capturing
the impact of the recommender system on song releases.
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Figure 17: Nested Consumer Decision Tree

The consumer first chooses whether to stay on Spotify, then whether to skip or listen to a song.

Appendix 3: Nested Logit Specification

In many papers in industrial organization, the researcher specifies a nested logit model,
with the outside option as its own nest. Such a choice structure would look like the fol-
lowing figure:

I estimate a conditional logit and nested logit model to compare the two. Following
Reimers and Waldfogel (2023), I estimate the nested logit model in a bottom-up fashion,
estimating the inside options first, then the nest parameter.

Tables 17 and 18 reports consumer demand estimates for both the conditional logit and
nested logit structure for consumers using the recommender system:

The coefficients in each model are identical. Additionally, the nested logit parameter,
𝜎, is one, suggesting that the nested logit collapses into a conditional logit model.

Appendix 4: Oracular Recommender Counterfactual

The second counterfactual analysis I conduct is an oracular recommender system. I de-
fine an oracular recommender as one where the recommender is capable of giving the
best possible song to each consumer, according to each consumer’s preferences. Such a
recommender system tends not to be feasible for several reasons: insufficient data, the
cost of specifying such a granular model, and countervailing financial incentives. Bour-
reau and Gaudin (2022) and Reimers andWaldfogel (2023) both describe models in which
platforms have incentives to bias recommender systems to maximize their own profit.

I implement this counterfactual in the following way:

1. Draw 10000 consumers and give them preferences from the demand estimates. I
sample from the distribution of consumer characteristics in the data to construct
values for those parameters.
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio
(Robust Std. Error) (Robust Std. Error)

Age 0.00161 1.000 0.00118 1.000
(0.00168) (0.00168)

Acousticness 0.0423*** 0.689 0.0420*** 0.688
(0.00196) (0.00197)

Acousticness² -0.0378*** – -0.0378*** –
(0.000252) (0.000253)

Danceability 0.150*** 3.287 0.150*** 3.287
(0.00362) (0.00385)

Danceability² 0.0651*** – 0.0651*** –
(0.00124) (0.00124)

Duration -0.00254 1.000 -0.00159 1.000
(0.00296) (0.00297)

Duration² 0.00759*** – 0.00758*** –
(0.000446) (0.000447)

Energy -0.0648*** 4.552 -0.0653*** 4.545
(0.00437) (0.00444)

Energy² 0.161*** – 0.161*** –
(0.00106) (0.00109)

Instrumentalness -0.0368*** 0.672 -0.0372*** 0.671
(0.00158) (0.00167)

Instrumentalness² -0.00628*** – -0.00628*** –
(0.000111) (0.000111)

Liveness 0.00530*** 1.061 0.00535*** 1.060
(0.00177) (0.00178)

Liveness² 0.000740*** – 0.000702*** –
(0.000168) (0.000168)

Loudness 0.0488*** 1.010 0.0483*** 1.010
(0.00355) (0.00358)

Loudness² -0.0136*** – -0.0136*** –
(0.000361) (0.000366)

Mode 0.0484*** 1.050 0.0484*** 1.050
(0.00313) (0.00315)

𝜇 – – 1*** –
– (0.00927)

Speechiness -0.00170 0.629 -0.00158 0.629
(0.00170) (0.00172)

Speechiness² -0.00829*** – -0.00830*** –
(0.000149) (0.000156)

Tempo 0.0184*** 1.000 0.0192*** 1.000
(0.00289) (0.00296)

Tempo² 0.00976*** – 0.00972*** –
(0.00113) (0.00113)

Time Signature -0.0597*** 0.942 -0.0545*** 0.947
(0.0109) (0.0109)

Valence 0.0155*** 0.995 0.0158*** 0.996
(0.00234) (0.00235)

Valence² -0.00517*** – -0.00517*** –
(0.00059) (0.000591)

Model Statistics
Observations 31,238,428 31,238,428
�̄�2 0.284 0.284
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 17: Logit and Nested Logit Demand Estimates - Song Characteristics
67



Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio
(Robust Std. Error) (Robust Std. Error)

Time of Day
Morning 0.150*** 1.162 0.151*** 1.163

(0.00415) (0.00423)
Afternoon 0.121*** 1.129 0.122*** 1.130

(0.00371) (0.00376)
Night 0.125*** 1.133 0.124*** 1.132

(0.00611) (0.00613)
Day of Week

Tuesday 0.0289*** 1.029 0.0296*** 1.030
(0.00538) (0.00538)

Wednesday 0.0231*** 1.023 0.0246*** 1.025
(0.00552) (0.00553)

Thursday 0.0207*** 1.021 0.0225*** 1.023
(0.00551) (0.00552)

Friday -0.0520*** 0.949 -0.0508*** 0.950
(0.00529) (0.00532)

Saturday -0.0220*** 0.978 -0.0211*** 0.979
(0.00568) (0.00568)

Sunday -0.0117** 0.988 -0.0107* 0.989
(0.00566) (0.00566)

User Characteristics
Premium 0.116*** 1.123 0.115*** 1.122

(0.00465) (0.00467)
Model Statistics

Observations 31,238,428 31,238,428
�̄�2 0.284 0.292
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 18: Logit and Nested Logit Demand Estimates - Contextual Characteristics
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Figure 18: Counterfactual Consumer Surplus - Oracular Recommendations

The oracular recommender increases consumer surplus by 5.3% compared to the simulated streaming ses-
sions.

2. Simulate a streaming session of 20 songs for each consumer, drawing from songs in
the release window.

3. Compute the consumer surplus of this session, as well as the average song charac-
teristics

4. Compute the consumer surplus of the 20 highest-utility songs, as well as the average
song characteristics of those songs.

5. Compare results between the two sets of songs.

First, I compare consumer surplus generated by these streaming sessions. Figure 18
reports the results of this comparison:

Each blue bar represent streaming sessions, and the red line represents the utility-
maximizing streaming session. The oracular recommender increases consumer surplus
by 16.6% compared to the simulated streaming sessions. This difference is statistically
significant at the 1% level.

Table 19 reports the average values of song characteristics for the simulated streaming
sessions and the utility-maximizing streaming sessions, and the difference in means:
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Characteristic Mean (Simulated) Mean (Optimal) Difference
Acousticness 0.20 0.40 -0.19***

(-3.83)
Age 0.05 0.15 -0.10

(-1.38)
Danceability 0.70 0.76 -0.06*

(-1.86)
Duration 207.82 184.65 23.17**

(2.00)
Energy 0.63 0.29 0.34***

(9.67)
Instrumentalness 0.01 0.00 0.01

(0.60)
Liveness 0.18 0.19 -0.01

(-0.45)
Loudness -6.38 -9.68 3.31***

(6.37)
Speechiness 0.16 0.16 0.00

(0.01)
Tempo 124.22 112.95 11.27*

(1.65)
Valence 0.44 0.42 0.02

(0.40)
Consumer Surplus 3.37 3.93 -0.56***

(-6.35)
Note: T-statistics in parentheses; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 19: Counterfactual Song Characteristics and Consumer Surplus - Oracular Recom-
mendations

The oracular recommender system surfaces more acoustic, more danceable, and less energetic than the sim-
ulated streaming sessions.

Songs in the optimal streaming session is more acoustic, more danceable, and less en-
ergetic than the simulated sessions. This suggests that the oracular recommender system
is more likely to recommend songs slower songs than a random recommender.
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Supplemental Tables

71



Characteristic Description
Acousticness A confidence measure from 0.0 to 1.0 of whether the

track is acoustic. 1.0 represents high confidence the
track is acoustic.

Danceability Danceability describes how suitable a track is for danc-
ing based on a combination of musical elements in-
cluding tempo, rhythm stability, beat strength, and
overall regularity. A value of 0.0 is least danceable and
1.0 is most danceable.

Energy Energy is a measure from 0.0 to 1.0 and represents
a perceptual measure of intensity and activity. Typ-
ically, energetic tracks feel fast, loud, and noisy. For
example, death metal has high energy, while a Bach
prelude scores low on the scale. Perceptual features
contributing to this attribute include dynamic range,
perceived loudness, timbre, onset rate, and general en-
tropy.

Instrumentalness Predicts whether a track contains no vocals. “Ooh”
and “aah” sounds are treated as instrumental in this
context. Rap or spoken word tracks are clearly “vo-
cal”. The closer the instrumentalness value is to 1.0,
the greater likelihood the track contains no vocal con-
tent. Values above 0.5 are intended to represent instru-
mental tracks, but confidence is higher as the value ap-
proaches 1.0.

Liveness Detects the presence of an audience in the recording.
Higher liveness values represent an increased proba-
bility that the track was performed live. A value above
0.8 provides strong likelihood that the track is live.

Speechiness Speechiness detects the presence of spoken words in a
track. The more exclusively speech-like the recording
(e.g. talk show, audiobook, poetry), the closer to 1.0
the attribute value. Values above 0.66 describe tracks
that are probably made entirely of spoken words. Val-
ues between 0.33 and 0.66 describe tracks that may
contain both music and speech, either in sections or
layered, including such cases as rap music. Values be-
low 0.33 most likely represent music and other non-
speech-like tracks.

Valence Ameasure from 0.0 to 1.0 describing the musical posi-
tiveness conveyed by a track. Tracks with high valence
sound more positive (e.g. happy, cheerful, euphoric),
while tracks with low valence sound more negative
(e.g. sad, depressed, angry).

Table 20: Descriptions of Song Characteristics
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Name Artist Duration (min) Tempo (BPM) Key Danceability Energy Speechiness Valence
Sympathy for the Devil Rolling Stones 6.3 116 A 0.7 0.67 0.21 0.56
Bohemian Rhapsody Queen 5.9 71 C 0.41 0.40 0.05 0.22

Sweet Dreams Eurythmics 3.6 125 C 0.69 0.71 0.03 0.88
Bad Romance Lady Gaga 4.9 119 C 0.7 0.92 0.04 0.71
My Universe BTS, Coldplay 3.8 105 A 0.59 0.7 0.04 0.44

Table 21: Examples of Song Characteristics

The first set of characteristics come from music theory (e.g., tempo, key), while the second set come from
machine learning models (e.g., danceability, energy, valence). Source: Spotify API
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Estimate Odds Ratio
(Robust Std. Error)

Age -0.0161*** 0.998
(0.00047)

Acousticness 0.0581*** 0.680
(0.000601)

Acousticness² -0.043*** –
(0.000101)

Danceability -0.00696*** 0.966
(0.00108)

Danceability² -0.00107** –
(0.000442)

Duration 0.00991*** 1.000
(0.000821)

Duration² -0.000538*** –
(0.0000838)

Energy -0.0104*** 1.856
(0.00126)

Energy² 0.0608*** –
(0.000371)

Instrumentalness -0.00516*** 0.722
(0.000495)

Instrumentalness² -0.00960*** –
(0.0000438)

Liveness 0.0107*** 0.844
(0.000512)

Liveness² -0.00635*** –
(0.0000626)

Loudness 0.00734*** 1.001
(0.000988)

Loudness² -0.00802*** –
(0.0000992)

Mode 0.0332*** 1.034
(0.000965)

Speechiness -0.00594*** 0.544
(0.00049)

Speechiness² -0.0104*** –
(0.0000562)

Tempo -0.00264*** 1.000
(0.000891)

Tempo² -0.00168*** –
(0.000441)

Time Signature 0.0334*** 1.034
(0.00305)

Valence 0.0272*** 0.596
(0.000714)

Valence² -0.0566*** –
(0.000239)

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 22: Full Sample Consumer Demand Estimates - Song Characteristics
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Estimate Odds Ratio
(Robust Std. Error)

Time of Day
Morning 0.139*** 1.149

(0.00129)
Afternoon 0.110*** 1.116

(0.00116)
Night 0.0526*** 1.054

(0.00182)
Day of Week

Tuesday 0.00859*** 1.009
(0.00170)

Wednesday 0.0118*** 1.012
(0.00174)

Thursday 0.0039** 1.004
(0.00173)

Friday -0.00988*** 0.990
(0.00169)

Saturday -0.0163*** 0.984
(0.00176)

Sunday -0.0159*** 0.984
(0.00175)

User Characteristics
Premium -0.0708*** 0.932

(0.00134)
Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 23: Full Sample Consumer Demand Estimates - Contextual Characteristics
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