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Abstract

I examine how recommender systems have influenced the music industry and shaped

music production. Using a structural model of the recorded music industry, I analyze

consumer behavior, platform recommendations, and rightsholder release decisions.

I estimate a fixed cost of $170,000 for songs that enter Spotify’s Top 200. Counter-

factual analysis shows that with randomized recommendations, fewer songs would

enter the market, reducing consumer welfare by 4%. The songs that do enter would

be 33 seconds longer on average and more heterogeneously long. Popularity-based

recommendations that do not account for individual taste would generate a superstar

effect—increasing gross profit margins for songs that enter the market to 40%—but

reducing consumer welfare by 13%. Although recommender systems have reduced

overall variety in music, they have also enabled additional entry and increased con-

sumer welfare.
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1 Introduction

Recommender systems, which are designed to match consumers with products they will

like, have transformed how consumers search for and acquire products. Such systems

are prevalent in many online marketplaces, including Amazon, TikTok, and Netflix, and

they have become a key feature of the digital music industry.
1

Music streaming platforms,

on which consumers can access a vast catalog of music for a fixed monthly fee, have

become the primary way consumers access music, with streaming accounting for 84% of

the recorded music industry’s $16bn revenue in 2023.
2

These platforms use recommender

systems to generate playlists that surface music to users, and they are where users discover

the majority of new music. I investigate how these recommender systems affect the music

industry, and how they have shaped the sound of music since their introduction.

Recommender systems have generated significant regulatory and policy interest in

recent years. Antitrust authorities have begun to investigate the effects of these systems

on competition, and several pieces of legislation have been passed to regulate them.

Examples include the Digital Markets Act and Digital Services Act in the EU and the

US Department of Justice litigation against RealPage for algorithmic pricing collusion.
3

These systems also raise questions about artistic diversity and the long-term cultural

impact of algorithmically driven music and cultural production.
4

This paper proposes a

quantitative framework to analyze the effects of these systems on the music industry and

estimate the welfare effects of these systems on consumers.

Recommender systems are a form of advertising for content on digital platforms, but

unlike typical advertising, the producer does not actually purchase the advertisement.
5

These systems come with a number of economic trade-offs. Consumers can more easily

find music they may like and discover new artists, and artists can reach a wider audience

than ever before (Aridor and Gonçalves 2022). At the same time, platforms can use these

algorithms to steer consumers toward profit-maximizing products, rather than products

that consumers actually prefer (Reimers and Waldfogel 2023). These systems may also

have inherent biases, resulting in recommendations that are not representative of the

population or that are harmful to certain groups (Melchiorre et al. 2021).

I focus on the equilibrium effects of these systems—whereby producers respond to the

1. Amazon, TikTok, Netflix.

2. RIAA 2023 Year-End Music Industry Revenue Report.

3. Digital Markets Act, Digital Services Act, US Department of Justice, August 2024.

4. New Yorker, "Drowning in Slop."

5. Platforms do have sponsored recommendations, but Spotify, the platform I study, did not introduce

these sponsored recommendations until after the timeframe of my data.
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recommender system by changing their product design—and how these changes affect

consumer welfare. To capture these equilibrium effects, I build a structural model of

the recorded music industry to estimate the supply of and demand for recorded music

on Spotify. This model has three sets of agents: consumers, Spotify, and rightsholders

(producers). Consumers receive songs from Spotify’s recommender system and choose

whether to listen to them during their streaming session under a logit framework. Spotify’s

recommender system computes the probability that a consumer will listen to a particular

song, based on the song’s characteristics and the consumer’s preferences, and delivers the

song to the consumer. Rightsholders, such as record labels, choose whether to release

songs to Spotify given the demand for the song, which is a function of the probability the

recommender system surfaces the song and the consumer listens to it. They are forward-

looking agents, looking to maximize expected profit, so they consider the future revenue

the song generates when deciding whether to release it. In an oblivious equilibrium,

rightsholders release songs so long as the expected revenue exceeds the fixed cost of

release, whose distribution I estimate as a function of song characteristics and label fixed

effects.

To estimate this model, I use three sources of data: the Music Streaming Session Dataset

(MSSD), data scraped from Spotify Charts, and the Spotify API. The MSSD contains 160m

consumer-level streaming sessions from July to September 2018. These streaming sessions

include song characteristics, consumer characteristics, length of the listen (binned), and

whether they got the song from a recommender system or other sources. Spotify Charts

is a website reporting the daily top 200 songs on Spotify for every country in which they

operate. It also includes stream counts and the Spotify ID for each song on the chart. The

Spotify API allows me to query the song characteristics of each song on Spotify Charts.

I find that song characteristics, such as length, tempo, and danceability, have changed

significantly since 2010. Using reduced-form analysis, I estimate that the introduction

of streaming services and recommender systems correlate to a 40-second decrease in

the average length of songs on Billboard’s Hot 100. Music industry executives have

also confirmed that they have changed the kind of music they release to better fit the

recommender system’s objectives (e.g., shorter, more danceable songs).

Using my structural model, I estimate a gap between consumer demand and rec-

ommender systems, driven by differences in their preferences, and find that producers

respond to this gap by targeting the recommenders’ objectives jointly with consumer

preferences. For example, although consumers are likelier to listen to longer songs, the

recommender system is likelier to surface shorter songs and producers respond by releas-

ing shorter songs. I also estimate the fixed cost of releasing a song into the Top 200 on
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Spotify at $170,000.

My counterfactual analysis focuses on changing Spotify’s recommender system to see

how it has affected song characteristics. I first impose random recommendations, as a

proxy for no recommendations, or a naive consumer search process. I find that in the

absence of recommender systems, songs are on average 33 seconds longer, more hetero-

geneous, and less profitable. As a result, fewer songs would be released, and consumer

welfare is 4% lower than in the status quo. I also consider a recommender system based

exclusively on song popularity, as a proxy for a ban on personalized recommendations,

or a simulation of the digital music storefronts of the 2000s (e.g., iTunes). Such a recom-

mender system would generate a superstar effect, which increases gross profit margins for

songs that enter the market to 40%, but reduces consumer welfare by 13%. In this coun-

terfactual, songs are 12 seconds shorter on average, and more danceable songs are likely

to be released. This suggests that Spotify’s recommender system has indeed changed the

sound of music, and that while these changes have reduced the variety of music available

to consumers, they have also increased both the quantity of songs and consumer welfare.

These results have significant economic and policy implications for the music industry

and digital platforms more broadly. Economically, I find that recommender systems

have reshaped the music production landscape by influencing not only consumer choices

but also the creative decisions of artists and record labels. This shift has led to increased

efficiency in matching consumer preferences with musical output, which potentially drives

higher revenues and more targeted content creation. From a policy perspective, this

research suggests that recommender systems may warrant regulatory scrutiny. Although

the study indicates overall positive effects on consumer welfare, these systems can also

drive concentration on digital platforms and in the music industry. Policymakers may need

to balance the benefits of increased efficiency and consumer satisfaction against concerns

about market power, artistic freedom, and cultural diversity. Furthermore, the study’s

methodology could inform future antitrust analyses and policy decisions regarding digital

platforms and their recommendation algorithms across various industries.

The paper proceeds as follows. Subsection 1.1 places this paper in the context of

the literature and identifies the contribution. Section 2 provides the background for the

recorded music industry, describes the industry structure, including music characteristics,

and provides reduced-form analysis of how technological changes have affected song

characteristics in order to motivate the structural model. Section 3 describes the data

and provides some descriptive analysis. Section 4 details the structural model of music

streaming and describes the oblivious equilibrium in which rightsholders release music.

Section 5 explains the estimation strategy. Section 6 provides and discusses the estimates of
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demand parameters, recommender system parameters, and fixed costs. Section 7 conducts

several counterfactual analyses by modifying the recommender system to observe how

equilibrium song releases change, and Section 8 concludes.

1.1 Literature Review

This paper contributes to several strands of the economics literature. First, it contributes

to the literature on the economics of music by developing a structural model of the music

streaming industry. Other works have analyzed the impact of Spotify on the industry. For

instance, Aguiar, Waldfogel, and Waldfogel (2021) use reduced-form analysis to identify

bias in the rankings of songs on Spotify’s New Music Friday playlist. They find that higher-

ranked songs tend to perform better after placement on the playlist, which suggests that

curators are looking to maximize streams for their playlist. They also find that the curators

of this playlist tend to favor songs by women and from independent labels, because they

rank higher than their post-placement performance would suggest. Benner and Waldfogel

(2016) use a difference-in-differences design to estimate how the digitization of recorded

music has affected the release strategy of record labels. They find that, after digitization,

major labels both release fewer albums and become more reliant on previously successful

artists; conversely, independent labels release more albums. I extend these papers by

applying these insights on Spotify playlists and digitization and embedding them in a

structural model of the industry. This paper also builds on Aguiar and Waldfogel (2018),

who develop a structural model of the digital music industry. They model consumer

demand for digital music across countries and estimate the fixed cost of entry under three

scenarios: perfect quality foresight, no quality foresight, and imperfect quality foresight,

in which firms know their songs’ quality, with some forecasting error. They estimate this

fixed cost as the expected revenue of the worst-performing song, and find that the fixed

cost is higher when rightsholders have no quality foresight. Their counterfactual analysis

finds that tripling the number of songs available to consumers under imperfect foresight

adds nearly 20 times as much consumer surplus as doing so under perfect foresight. I

extend this model to the music streaming industry by modifying the choice structure to

reflect the streaming industry, incorporating a recommender system in the model, and

introducing forward-looking rightsholders.

Second, I contribute to a growing literature on recommender systems in economics.

Bourreau and Gaudin (2022) use a Hotelling model of music listening with a recommender

system and a digital platform that hosts both songs. They find that the platform uses the

recommender system to drive consumers to songs with lower royalty rates, even if they
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are further from the consumer’s ideal song. Aridor and Gonçalves (2022) similarly embed

recommender systems in a theoretical model of digital platforms. They focus on the

effect of these systems when the platform competes with its sellers (i.e., acts as a hybrid).

They find that the platform uses the recommender system to steer consumers toward

its own products, and that this can reduce consumer welfare through the foreclosure of

third-party sellers. They also find that policy remedies are ambiguous in their effects, and

that they can reduce consumer welfare if they are not carefully designed. I extend these

analyses to an empirical model of the music industry and focus on how these systems

affect producer product decisions. Melchiorre et al. (2021) introduce a large-scale dataset

of music listening from Last.FM, a scrobbling service, and they use these data to investigate

how several algorithms may exhibit gender bias. They find that significant disparities exist

in recommendations with respect to certain gender groups. Aridor et al. (2023) conduct a

field experiment to determine whether recommender systems affect consumption, using

the recommendation service MovieLens. They find that recommender systems increase

consumption beyond just the exposure provided by the recommendation. They also

induce consumers to acquire additional information beyond what the recommendation

provides. I apply their experiments to a structural model of the music industry.

Finally, I contribute to the literature on digital platforms and intermediation. Re-

cent work in this area has focused on the role of platform exclusives and the possibility

that these platforms can bias search and recommendation results toward certain profit-

maximizing products, at the expense of consumer welfare. Lee (2013) constructs an

empirical model of the video game industry that focuses on the role of exclusive games on

console platforms. He finds that in the absence of exclusivity agreements, both console

sales and consumer welfare would be higher, but only the incumbent console manufac-

turer would benefit from the absence of such agreements. I extend his model of game

production to the music industry, and build on his use of first-order Markov processes to

model firm dynamics. Reimers and Waldfogel (2023) develop an equilibrium framework

to develop a workable definition of platform bias. Their model posits a welfare frontier

for platforms, which is a weighted sum of consumer surplus and platform profits. They

then test for biased rankings (recommendations) on the platform by evaluating whether

the platform is on the frontier. They illustrate the approach by estimating the amount of

bias in a structural model of Amazon and Expedia and find that both platforms are off the

frontier. Aguiar and Waldfogel (2021) estimate the effect of including a song on a Spotify

playlist using a regression discontinuity and instrumental variable design. They find that

being included on a playlist significantly increases a song’s eventual streams. I build on

this work by incorporating algorithmic playlists in my model of the music industry.
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Figure 1: Real Revenue of the Recorded Music Industry, 1990-2023

Music revenue increased in real terms throughout the 2010s, with streaming services representing a growing

share of revenue. Source: RIAA

2 Background and Industry Structure

2.1 Background

Technological changes have revolutionized the music industry over the last thirty years,

as evinced by their fall and rise in real revenue in figure 1.

Growing access to the internet in the 1990s made it easier for consumers to digitally

copy and share music, which led to the creation of illicit file-sharing services, such as

Napster and Limewire, in the late 1990s. As these services spread in the early 2000s,

revenues for the recorded music industry declined, which industry executives attributed

to these services. Legal challenges brought by the Recording Industry Association of

America resulted in the closure these services in the 2000s, but many copycat services

emerged in their place.

To take advantage of the market for digital music and to support its iPod music players,

Apple launched the iTunes store in 2003. iTunes made it easy for consumers to legally

purchase digital music at low prices (99 cents per song). To address concerns about piracy,

Apple made it difficult to share music sold on its platform, and designed its files such that
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they could only be played through iTunes or listened to on iPods.
6

Additionally, Apple

negotiated a revenue-sharing deal with labels, giving them 30% of the revenue of every

sale on iTunes, setting a precedent for revenue-sharing arrangements on digital platforms

for the next two decades. While other digital companies attempted to launch their own

music platforms (e.g., Google, Microsoft), none of them reached the level of financial

success or cultural impact as iTunes. iTunes also broke up the album format, allowing

consumers to purchase individual songs, rather than entire albums, another important

precedent for streaming services.

In the late 2000s, some companies (e.g., Yahoo, Microsoft) began to experiment with

streaming services, which provided consumers with on-demand access to an entire library

of music for a subscription fee.
7

Such services did not see widespread acceptance until

the early 2010s, when Spotify launched in the U.S. Spotify combined a 15,000,000-song

library and an accessible two-tiered plan that included a free, ad-supported tier, and a

paid, ad-free subscription tier. The subscription fee was waived for the first six months

after launch.
8

Streaming made piracy much more difficult than copying digital downloads

from iTunes or other digital platforms, because the service relied on streaming music from

a centralized server.
9

Spotify and similar streaming services (e.g., Apple Music, YouTube Music) proved

incredibly popular, and helped to reverse the decline in the recorded music industry.

Today, these services have become the primary way that consumers access music, with

streaming accounting for 84% of the industry’s revenue in 2023 (Figure 1).

2.1.1 Music and its Characteristics

Recorded music is the uniquely arranged combinations of sounds and vocals typically

recorded in a studio. As a product, recorded music exists along numerous dimensions:

length, chords, pitch, beats per minute, vocals, choices of instruments, etc. This results

in infinitely many possible forms of music, ranging from the traditional (e.g., Beethoven’s

Ninth Symphony) to the esoteric (e.g. John Cage’s 4’33"). Many of these dimensions

are continuous, making it possible to use them as characteristics in a model of consumer

preferences. (Lancaster 1966). In addition to the classical characteristics from music

6. https://www.engadget.com/2013-04-29-the-itunes-influence-part-one.html

7. https://www.thurrott.com/music-videos/groove-music/6033/microsoft-is-finally-retiring-zune-

zune-music-pass

8. https://www.npr.org/sections/therecord/2011/07/14/137842612/spotify-has-arrived-stateside-

heres-what-you-need-to-know, https://www.theverge.com/2012/1/6/2688250/spotify-free-account-

restriction-10-hours-per-month

9. Amusingly, Spotify initially used pirated music before its agreements with record labels (Eriksson

et al. 2019)
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Name Artist Duration (min) Tempo (BPM) Key Danceability Energy Speechiness Valence

Sympathy for the Devil Rolling Stones 6.3 116 A 0.7 0.67 0.21 0.56

Bohemian Rhapsody Queen 5.9 71 C 0.41 0.40 0.05 0.22

Sweet Dreams Eurythmics 3.6 125 C 0.69 0.71 0.03 0.88

Bad Romance Lady Gaga 4.9 119 C 0.7 0.92 0.04 0.71

My Universe BTS, Coldplay 3.8 105 A 0.59 0.7 0.04 0.44

Table 1: Examples of Song Characteristics

The first set of characteristics come from music theory (e.g., tempo, key), while the second set come from

machine learning models (e.g., danceability, energy, valence). Source: Spotify API

theory (e.g, key, tempo, time signature), I include characteristics from machine learning

models (e.g., danceability, energy, valence) in my model. I include descriptions of these

characteristics in the Appendix (see Table 20).

Table 1 presents some examples of characteristics for popular songs.

Recently, cultural critics have observed a decrease in pop song length over the last

twenty years, alongside a decrease in title length and an increase in lyric density.
10

In Fig-

ure 2, I plot the average length of songs on Billboard’s Hot 100, by release year, finding that

the average length of songs has been decreasing over time, with a noticeable acceleration

in the 2010s.

To augment this, I conduct a reduced-form analysis of songs on Billboard’s Hot 100 to

confirm these trends. Specifically, I estimate the correlation between the introduction of

new music formats and song duration. My regression equation is the following:

Duration𝑗 = 𝛽0 + 𝛽11{Vinyl}𝑡 + 𝛽21{Cassette}𝑡 + 𝛽31{CD}𝑡
= 𝛽41{Digital}𝑡 + 𝛽51{Streaming}𝑡 + 𝛽61{Recommenders}𝑡 + 𝜖 𝑗

(1)

Each independent variable is an indicator variable for whether the particular format

or technology was available at the time of the song’s release. Table 2 reports the results of

this regression.

These results are all statistically significant at the 1% level, and are negative for both

the introduction of streaming services in the US in 2011 (as exemplified by Spotify), and

the deployment of recommender systems on Spotify in 2015 (after their acquisition of

Echo Nest). Combined, the introduction of these technologies are correlated with a 40-

second decrease of average song length for songs that make it to Billboard’s Hot 100, when

comparing songs released in 2018 to songs released in 2010. This analysis is consistent with

anecdotal evidence of changes in songs since the introduction of streaming services, but it

10. https://michaeltauberg.medium.com/music-and-our-attention-spans-are-getting-shorter-

8be37b5c2d67
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Figure 2: Average Song Duration on Billboard’s Hot 100, 1990-2022

The average length of songs on Billboard’s Hot 100 has been decreasing over time, with a noticeable

acceleration in the 2010s. Source: Billboard

does not establish a causal relationship, or the mechanism by which these changes occur.

For that I construct a structural model of the industry, whose agents and relationships I

describe in the following subsection.
11

2.2 Industry Structure

I group the recorded music industry into four sets of agents: artists, rightsholders, stream-

ing platforms, and consumers. Figure 3 maps out the relationships between these agents.

Beginning on the left, artists create music, either by themselves or in contract with

a record label, who serves as a rightsholder. An artist on contract with a rightsholder

typically receives an advance and production assistance in exchange for ownership over

the music they create. Artists also receive a share of the revenue (royalties) from the music

they create, as negotiated with the rightsholders.
12

The market for artists is highly diffuse,

with tens of thousands of artists working on music each day, competing not just with

11. In Appendix 8, I examine whether consumer preferences have changed over time, and whether these

preferences are driving the changes in song length.

12. Song Royalties are an incredibly complex area of law, which I simplify for the purpose of this analysis

by focusing on the payments between rightsholders and platforms. For a more detailed explanation, see

https://www.royaltyexchange.com/blog/music-royalties-101-intro-to-royalties

9
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Dependent variable: Duration (m)
Recommendations -0.394

∗∗∗

(0.081)

Streaming Services -0.207
∗∗∗

(0.047)

Digital Sales -0.343
∗∗∗

(0.052)

CD 0.882
∗∗∗

(0.141)

Cassette 0.824
∗∗∗

(0.142)

Vinyl -0.349
∗∗∗

(0.049)

Intercept 3.023
∗∗∗

(0.020)

Observations 6879

N. of songs 6276

N. of years 84

𝑅2
0.237

Residual Std. Error 0.522 (df=6872)

F Statistic 355.734
∗∗∗

(df=7; 6872)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Standard Errors clustered at the year level

Table 2: Reduced Form Regression Results

The introduction of streaming services correlates to a 12-second decrease in song length, while the intro-

duction of recommender systems correlates to a 24-second decrease in song length.

Artists
(Queen)

Producers
(Sony)

Platforms
(Spotify)

Consumers
(Us)

Produce music
Release music

to platforms
Deliver music

and recommendations

Pay subscription
and listen to music

Share 60% of
subscription revenue
based on streamshare

Pay production costs
and royalties;

assist production

Figure 3: Vertical Structure in the Music Industry

This structure identifies the economics relationships in the music industry, and highlights the ones I estimate

in red.
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Figure 4: Concentration in the Recorded Music Industry, 2023

The Big Three record labels (WMG, Sony, UMG) comprise 77% of the market, while independent labels

comprise the remaining 23%. The Big Three streaming platforms (Spotify, Apple Music, Amazon Music)

comprise 80% of the market.

each other, but with the entire history of recorded music. The Bureau of Labor Statistics

estimates that there are approximately 35,000 musicians and singers in the U.S., as of May

2023.
13

Rightsholders, such as Sony, Warner, and Universal (the Big Three record labels),

are responsible for distributing music to consumers, either through physical media (e.g.,

CDs) or through digital platforms (e.g., Spotify). They also search for new and upcoming

artists to sign to contracts and promote their music. These labels also have a wide variety

of subsidiary labels (or sub-labels) to focus on particular types of music or audiences.

These sublabels sometimes end up competing for artists. Rightsholders also negotiate

with streaming platforms to distribute music, bargaining over the share of revenue they

receive from the platform, and the terms of the contract. I discuss the bargaining between

rightsholders and streaming platforms in more detail in the following subsection. Right-

sholders are a highly concentrated section of the industry, with the Big Three (WMG, Sony,

and UMG, including their sublabels) capturing 77% of the market. Other independent

labels comprise the remaining 23% of the market. Figure 4 shows the market share of

rightsholders (and streaming services).

Streaming platforms, such as Spotify, Apple Music, and Amazon Music, are respon-

13. https://www.bls.gov/oes/current/oes272042.htm
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sible for distributing music to consumers, either through a subscription or ad-supported

model. These platforms began to enter the U.S. market in the early 2010s, after starting

in Europe in the late 2000s, and they have revolutionized the recorded music industry,

allowing consumers to access a vast catalog of music for a fixed monthly fee. As with

rightsholders, this section of the industry is highly concentrated, with five firms com-

prising approximately 80% of the market. Figure 4 shows the market share of streaming

platforms (and rightsholders).

These platforms have relatively homogeneous music catalogs, hosting songs from the

Big Three and many independent labels. Instead, they differentiate instead on their recom-

mendation engines, interface, and ancillary features (e.g., exclusive podcasts, integration

with smart devices, etc.). I speculate that the presence of YouTube as a free, ad-supported

platform for music and lyric videos made it difficult for these platforms to compete on

exclusive content.
14

This is especially true because non-rightsholders can easily upload

music to YouTube, creating a difficult cat-and-mouse game for uploaders, rightsholders

and the platform. It is easier for rightsholders to upload their music to YouTube and gain

ad revenue for it, thereby making YouTube a streamer of last resort for consumers.

Streaming platforms offer multiple services to consumers, which I group into two: ad-

supported and premium subscriptions. Ad-supported subscriptions allows consumers

to access music at no monetary cost, instead facing use restrictions and advertising. On

Spotify, ad-supported consumers have total access to fifteen playlists, which are a mix-

ture of editorial (human-curated) and algorithmically-generated playlists. For any other

playlist on the service, users can only shuffle songs (i.e., they cannot directly select a song).

Additionally, ad-supported users can only skip up to six songs per hour, must listen to

advertising breaks during their streaming sessions, and stream at lower audio quality

(bitrate). Premium subscribers pay a monthly fee ($11.99 a month at the time of writing,

$9.99 at the time of analysis) to remove all the aforementioned restrictions.
15

2.2.1 Vertical Contracts between Rightsholders and Streaming Platforms

Spotify contracts with rightsholders to distribute music to consumers. These contracts set

the terms under which Spotify can license music and how Spotify pays rightsholders.
16

Spotify pays rightsholders for royalty-bearing streams (RBS), defined as any play of a

14. While some music platforms (e.g., TIDAL) attempted to differentiate through exclusive music, they

abandoned this strategy.

15. Spotify also offers a variety of group and student subscriptions at a lower price per user.

16. Singleton (2015)
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Revenue Sharing Payoff:

𝜏 × 𝑅𝐵𝑆𝑗∑
𝑗∈𝒥 𝑅𝐵𝑆𝑗

× Rev
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Per-User Payoff(
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Figure 5: Revenue Sharing Payoff Structure

Rightsholders usually receive a percentage of Spotify’s revenue proportionate to their streamshare, but

can receive a per-user/per-play fee as a fallback for premium subscribers and ad-supported listeners,

respectively.

song that lasts more than 30 seconds.
17

Rightsholders earn income based on their song’s

streamshare, which is its number of royalty-bearing streams divided by the total number

of royalty-bearing streams on the platform in a given month. I write the streamshare

equation as follows:

Streamshare𝑗 =
RBS𝑗∑
𝑘 RBS𝑘

Spotify pays rightsholders separately for ad-supported and subscription consumers,

and these two types of consumers have different payment structures. For premium

subscribers, Spotify pays rightsholders the greatest of a share of gross revenue or a per-

subscriber fee, multiplied by a sharing parameter. For ad-supported subscribers, Spotify

pays rightsholders the greatest of a share of ad revenue of a per-stream fee. Figure 5 shows

the payoff structure for rightsholders.

At the time Spotify entered the market in 2011, its contract with Sony stated that the

revenue share was 60%, the per-subscriber fee was $6, and the per-stream fee was $0.0225.

The contract also had a most-favored nation clause, suggesting that these rates prevailed

for all three of the major labels. Spotify has since renegotiated these rates, but the exact

terms are not public.

At launch, Spotify charged $9.99 for a premium subscription, so the revenue share and

per-subscriber fee were equivalent at that time. Since Spotify has gone public in 2017, its

17. Spotify has begun to deploy longer cutoffs for certain types of songs to qualify for RBS.

https://artists.spotify.com/en/blog/modernizing-our-royalty-system
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premium average revenue per user has been well below the per-subscriber fee, primarily

because of family and student plans, which reduce the price per user. Assuming that

Spotify has not renegotiated the per-subscriber fee with rightsholders, this would suggest

that this fee (times the number of subscribers) is greater than the revenue share, and

that Spotify is paying rightsholders the per-subscriber fee. Singer and Rosenblatt (2023)

suggest, however, that the per-subscriber fee is a floor, and that Spotify pays rightsholders

a revenue share of approximately 65% of gross revenue.
18

The structure of this contract is vital for understanding the incentives of rightsholders

to release different kinds of music on Spotify. Firms have a clear incentive to reduce

song length to increase the number of RBS, and thereby increase their streamshare and

revenue from Spotify. Spotify, however, would pay more for ad-supported subscribers if

more streams occurred, so they would prefer to have longer songs. Consumers also have

preferences over song length, which can affect these incentives.

Spotify responds to these incentives through its recommender system. Singer and

Rosenblatt (2023) report that Spotify’s recommender system rewards songs that users

complete, and penalize ones that consumer only partially listen to. This has driven right-

sholders to adjust the structure and characteristics of their music to align with the priorities

of Spotify’s recommender system. I investigate how rightsholders have responded to the

recommender systems, and whether these recommender systems are welfare-improving.

3 Data

I leverage two sources of data in this project: the Music Streaming Sessions Dataset (MSSD,

Brost, Mehrotra, and Jehan 2018), and data from Spotify Charts. The MSSD consists of

160m consumer-level streaming sessions between July 15th and September 18th of 2018,

with each session containing up to twenty songs a consumer interacted with on Spotify.

The MSSD defines a streaming session as any listening session with less than 60 seconds

between songs. The data also only contain streaming sessions with at least ten songs, and

it truncates all streaming sessions after twenty songs.

The MSSD contains both song characteristics for the approximately 3 million songs in

its data and data for each of the approximately 2bn song-consumer interactions. The song

characteristics include both musical characteristics and machine learning characteristics.

Musical characteristics include tempo, duration, key, time signature, and mode. Machine

learning characteristics are data generated by machine learning classification systems,

and these characteristics include danceability, energy, valence, and acousticness. Machine

18. Specifically, labels receive 52%, and publishers receive another 10-12%.
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learning characteristics are continuous on a [0, 1] support, while musical characteristics

may be continuous (e.g., tempo) or discrete (e.g., key).

Consumer-song interactions include a wide array of information about the consumer

and how they interact with the song. The variable of interest is how long the consumer

listens to the song, which is grouped into four bins ("skipped very early","skipped early",

"listened to most of the song", "listened to the entire song"). I assume that consumers

who do not skip a song very early (i.e., are not in the first bin) have listened to enough of

the song for it as an RBS. I also observe details about the consumer’s streaming session:

the position of the song in the session, the date and hour when they listened to each

song in the session, and whether the consumer was listening to a song they searched

for, their own collection, an editorial playlist, or an algorithmic playlist or radio station.

Additionally, I observe what the consumer did after each song, which I use to determine

under what circumstances a consumer ended their streaming session. Moreover, I observe

the consumer’s subscription status at the time of listening. I use these choice-level data to

estimate my model of consumer demand and the recommender system.

When working with the MSSD, I use a stratified sampling strategy. Specifically, I

sample 0.5% of the consumers who listen to each song. For each song, I sample all of

that consumer’s streaming session. Additionally, the same consumer may be sampled in

multiple songs, but I only include their data once. This results with a sample of 180m

observations, representing approximately 10% of the total data.

My second data source is Spotify Charts, a website that reports the top 200 songs on

Spotify daily for each country Spotify operates in. For each of these top 200 songs, Spotify

reports the number of streams, providing market-level consumption information for these

top 200 songs. Spotify also provides the song’s Spotify ID, which can be connected to

Spotify’s API to retrieve the song’s characteristics. I rely on a Kaggle dataset that scraped

Spotify Charts and Spotify’s API to collect this data.
19

I use these data, in conjunction

with the demand and recommender system estimates, to estimate the supply model of

the industry and to conduct counterfactual analysis.

Another data source to which I have access is the LFM-2B. This dataset contains 2bn

listening events from Last.FM, a music scrobbling service. Users can connect their listening

histories to Last.FM, which records them and provides recommendations and analysis of

their listening habits. These data are available through a public API, and they have been

consolidated into a single dataset by Melchiorre et al. (2021). These data contain all

listening events from 2005 to 2020, including the song, how long a user listened, and some

demographic information about the user: age, gender, country. ListenBrainz is a similar

19. https://www.kaggle.com/edumucelli/spotifys-worldwide-daily-song-ranking
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Mean Median Standard Deviation Min Max

Duration (s) 203.27 199.32 54.28 30.13 943.53

Release Year 2019 2019 1.39 2017 2021

Acousticness 0.23 0.13 0.25 0.00 0.99

Danceability 0.67 0.68 0.15 0.06 0.98

Energy 0.62 0.63 0.17 0.01 1.00

Instrumentalness 0.01 0.00 0.09 0.00 0.96

Liveness 0.18 0.13 0.14 0.02 0.97

Loudness -6.83 -6.38 2.71 -38.86 0.35

Mode 0.61 1.00 0.49 0.00 1.00

Speechiness 0.15 0.09 0.13 0.02 0.97

Tempo (BPM) 122.41 122.08 30.04 40.32 212.06

Time Signature 0.97 1.00 0.16 0.00 1.00

Valence 0.46 0.46 0.22 0.03 0.98

Table 3: Spotify Charts Song Characteristics (𝑁 = 9, 244 songs)

Songs in Spotify’s Top 200 between 2017 and 2021 were predominantly from those years, high in energy and

danceability, and low in acousticness and speechiness.

service, which has become more popular in recent years, and provides similar information

as the LFM-2B. I plan to use these data to augment my demand estimates, and to provide

more comprehensive listening histories to improve the recommender system model.

3.1 Descriptive Statistics

Table 3 reports the descriptive statistics for the Spotify Charts data.

I focus on the top 200 songs in the US between 2017 and 2021. In this period, 9, 244

unique songs entered Spotify’s top 200. The average song length is 3 minutes and 24

seconds, with a standard deviation of 54 seconds. However, the range of length is very

wide, with songs as short as 30 seconds and as long as 15 minutes and 45 seconds making

it to the top 200. The average song tempo is 122 beats per minute (BPM), with a low of 40

BPM and a high of 212 BPM. All the machine learning characteristics are bounded between

0 and 1, but their averages vary widely: the average song has an average danceability of

0.67, but an average acousticness of 0.23. The average song is an uptempo, energetic, and

danceable track, unlikely to be a live recording or acoustic performance. It’s also unlikely

to be a spoken word song, but it could convey either positive or negative emotion (the

valence is 0.46).

Figure 6 reports the correlation matrix of the song characteristics in the Spotify Charts

data.
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Figure 6: Correlation Matrix of Spotify Charts Song Characteristics

Most of the song characteristics are uncorrelated with each other.

Most of these characteristics are uncorrelated with each other, except for loudness and

energy, which are positively correlated (0.73), and loudness and acousticness, which are

negatively correlated (-0.53).

The Spotify Charts data also provides information about the lifecycle of songs. Figure

7 reports the number of streams of a song by day after release:

This figure shows the average number of streams each song that made it on Spotify’s

Top 200 received in the days since its release. Unsurprisingly, songs get a significant

number of their streams in the first 100 days after release, with the average number of

streams above 400, 000 per day for the first 100 days. After that, the number of streams

decreases, with a small uptick around the one and two-year marks, but continuing to fall

off over time. The number of streams becomes more volatile after the three-year mark,

because fewer songs have been out for that long in my data.

Moreover, I plot the network of songs to determine how much external validity analysis

of the US data provides. Figure 8 shows the network of songs in the Spotify Charts data.

Each node (circle) in the chart represents a country, and each edge (line) represents
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Figure 7: Number of Streams of Songs on Spotify’s Top 200, by Days since Release

Songs receive most of their streams in the first 100 days after release, with a small uptick around the one

and two-year marks.

songs that appears in the top 200 in both countries. I use a nearest neighbor algorithm to

determine which countries have the most overlap with up to 15 neighbors. I then group

them by similarity and plot the network. The network has two main clusters: Spanish-

speaking countries, and the rest of the world. The rest of the world is highly connected,

with significant overlaps in songs. Within the rest of world cluster, some subclusters

are apparent: Nordic countries, East Asian countries, and Anglophone countries. This

network suggests that focusing on the US provides a good level of external validity for

other non-Spanish speaking countries, but that the Spanish-speaking countries may have

different preferences in music.

Table 4 reports the descriptive statistics for the songs in the Music Streaming Sessions

Dataset.

The MSSD contains approximately 3.7 million unique songs, with an average length of 3

minutes and 54 seconds, with a standard deviation of 1 minute and 48 seconds. Compared

to the Spotify Charts data, these songs are longer and have a higher standard deviation in

length. These songs are also older than the Spotify Charts songs, with an average release

year of 2009 (median 2013), compared to 2019 (median 2019) for the Spotify Charts songs.

The songs in these data have similar tempos and levels of energy and valence, but vary
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Figure 8: Spotify Charts Song Network

The network of songs in the Spotify Charts data shows two main clusters: Spanish-speaking countries, and

the rest of the world.

Mean Median Standard Deviation Min Max

Duration (s) 233.19 217.91 108.40 30.00 1800.00

Release Year 2009 2013 11.03 1950 2019

Acousticness 0.35 0.22 0.34 0.00 1.00

Danceability 0.56 0.57 0.19 0.00 1.00

Energy 0.59 0.63 0.26 0.00 1.00

Instrumentalness 0.21 0.00 0.34 0.00 1.00

Liveness 0.21 0.13 0.19 0.00 1.00

Loudness -9.60 -8.08 5.73 -60.00 6.28

Mode 0.65 1.00 0.48 0.00 1.00

Speechiness 0.10 0.05 0.14 0.00 0.97

Tempo (BPM) 120.07 119.95 30.43 0.00 249.99

Time Signature 0.97 1.00 0.18 0.00 1.00

Valence 0.48 0.47 0.27 0.00 1.00

Table 4: MSSD Song Characteristics (𝑁 = 3.7𝑚 songs)

Songs in the MSSD are longer, older, and more varied in their characteristics than the Spotify Charts data.

slightly in other characteristics, such as danceability and instrumentalness. Overall, the

difference in the data is representative of the changes in popular music over the last decade,
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Figure 9: Correlation Matrix of MSSD Song Characteristics

Most of the song characteristics are uncorrelated with each other.

with the MSSD data representing a wider variety of music than the Spotify Charts data.

Specifically, the Spotify Charts data reflects more spoken-word, danceable, and shorter

songs. When using both of these datasets, I standardize the Spotify Charts variables using

the MSSD variables.

Figure 9 reports the correlation matrix of the song characteristics in the MSSD.

As with the Charts data, most of these characteristics are uncorrelated, but with the

same exceptions: loudness and energy are positively correlated (0.77), and loudness and

acousticness are negatively correlated (-0.58). Energy and acousticness are also negatively

correlated (-0.71), as valence and danceability are positively correlated (0.52).

Table 5 reports the consumer-level statistics for my sample of the Music Streaming

Sessions Dataset.

Consumers in my sample are primarily premium subscribers, with 84% of the sample

being premium subscribers. This is significantly higher than the percentage of premium

subscribers Spotify reports, which is 40% of its user base.
20

It is, however, more repre-

20. Spotify Q2 2024 Earnings Report
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Mean Standard Deviation

Session Length 18.07 6.91

% Shuffle 0.35 0.31

% Premium Subscribers 0.84 0.31

% RBS 0.58 0.31

% Completion 0.34 0.31

% Morning Listen 0.24 0.31

% Afternoon Listen 0.39 0.31

% Evening Listen 0.29 0.31

% Night Listen 0.08 0.27

% Monday Listen 0.15 0.31

% Tuesday Listen 0.15 0.31

% Wednesday Listen 0.14 0.31

% Thursday Listen 0.14 0.31

% Friday Listen 0.15 0.31

% Saturday Listen 0.13 0.31

% Sunday Listen 0.13 0.31

% Catalog Listen 0.24 0.43

% Chart Listen 0.01 0.11

% Editorial Playlist Listen 0.15 0.35

% Algorithmic Playlist Listen 0.03 0.16

% Algorithmic Radio Listen 0.15 0.35

% User Collection Listen 0.42 0.49

Table 5: MSSD Consumer Characteristics (𝑁 = 180𝑚 song-consumer interactions)

Consumers in the MSSD have long streaming sessions, with a high percentage of RBS, but a low percentage

of song completion. They primarily listen to their own collections, but about 20% of their listens are

algorithmically driven.

sentative of the percentage of revenue Spotify earns from premium subscribers, which is

88% of its revenue.
21

These users have very active streaming sessions, with an average

session length of 18 songs. They also are somewhat likely to listen on shuffle, with 35%

of sessions being shuffle sessions. These listeners are also rather active: while 58% of

consumer-song interactions are long enough to be considered an RBS, consumers only

complete 34% of the songs they receive. Listening time is even throughout the week, with

13-15% of sessions occurring on each day of the week. Within a day, however, very little

listening occurs at night (12-6 AM), with only 8% of sessions occurring during this time.

Consumers in my sample primarily listen to music from their own search process, or

21. Spotify Q2 2024 Earnings Report
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from their own collections, with 66% of sessions being from these sources. Algorithmic

playlists and radio stations consist of 18% of streaming sessions. Editorial (human-curated)

playlists and top charts are the least common source of music, with only 16% of sessions

coming from these playlists.

4 Model

To model the effect of recommender systems on the music industry, I develop a structural

model of the industry, with three sets of agents: consumers, a recommender system, and

rightsholders. Consumers (the demand side) receive songs from the platform (and its

recommender system) and choose whether to listen to them. I capture this choice using

a random utility model, which generates a probability of listening to a song based on

its characteristics and the consumer’s characteristics. The recommender system, which I

treat as an exogenous technology, computes the probability consumers receive particular

songs based on their characteristics and the consumer’s characteristics. The recommender

system surfaces songs in proportion to their probability of being listened, and the joint

probability of being surfaced and the probability of being heard is the choice probability

rightsholders face. On the supply side, rightsholders choose whether to release songs

provided to them by artists, paying a fixed cost to releasing them. Rightsholders (the

supply side) choose whether to release the song they have in their inventory, based on its

expected profit, which is a function of the choice probabilities at the time of release and

in the future. These rightsholders are forward-looking, anticipating the evolution of the

market and the recommender system through first-order Markov processes. To motivate

these processes, I employ and oblivious equilibrium, where each firm considers only the

long-run average choice of the industry, rather than each rival’s choice. Figure 10 describes

the timing of the model each period.

4.1 Demand

Consumers in my demand model are subscribers to a streaming platform offering them a

catalog of songs.
22

Each day, these consumers open the streaming app and start receiving

songs from the platform, as informed by the recommender system. For each song they

receive, consumers make one of three possible choices: listen to the song (up to the amount

necessary for an RBS), skip the song, or stop listening to the platform, which I treat as an

22. I do not model the extensive decision to subscribe to Spotify (or join the ad-supported tier). While

Spotify does report subscriber data, price variation is somewhat limited over time.
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Each producer chooses whether to release song

with characteristics 𝑋𝑗 , paying fixed cost 𝐹𝑗

The recommender system

on Spotify

determines the probability of

recommending song 𝑗

Consumers choose to listen or skip

each song 𝑗 they receive

Figure 10: Timing of the Model in Each Period

Producers move first in the model, followed by the recommender system, then consumers. I solve this

model recursively.

Receive Song

Listen

(60%)

Skip to

Next Song

(35%)

Log Off:

Outside Option

(5%)

Figure 11: Consumer Decision Tree

Consumers, after receiving a song, choose whether to listen to a song, skip it, or log off, ending their

streaming session.

outside option. Figure 11 describes the decision tree for consumers in the demand model.

I maintain one assumption about consumers in my model:

Assumption 1 Consumers do not consider how their choice affects future personalized recom-
mendations.23

This assumption allows me to model consumers as static agents, simplifying the de-

mand model and allowing me to focus on the supply-side effects more directly.

Consumers have random utility over the songs they receive and the outside option.

Consumer 𝑖’s utility of listening to a particular song 𝑗 in session position 𝑠 is given by:

23. Anecdotal evidence suggests consumers do not extensively think about future songs when deciding

whether to listen to a song, or how their choice affects future recommendations, especially when they are

uninformed about the specific mechanisms of the recommender system.
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𝑈𝐿,𝑖𝑗𝑠 = 𝛽𝑋𝑗 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠 + 𝜖𝑖 𝑗𝑠 (2)

In this utility function, 𝑋𝑗 are a vector of linear and quadratic song characteristics

(alternative-specific variables), 𝑌𝑖 are a vector of consumer characteristics (case-specific

variables), 𝜂𝐿𝑠 are position-specific fixed-effects, and 𝜖𝑖 𝑗𝑠 is a Type 1 (Gumbel) Extreme

Value error term. The consumer characteristics and session fixed effects are case-specific

variables, so their parameters are also case-specific, following the standard in conditional

choice models. Intuitively, consumers prefer certain types of music, which I decompose

into quantitative characteristics, and their utility from a particular song may depend on

when they are listening, both during the day, and where they are in their streaming session.

Additionally, to capture horizontal preferences over music, I employ quadratic terms for

the song characteristics, which allow for non-linear preferences. Passive consumers may

not skip songs often (if at all); active users are likely to skip songs often, finding one they

like; and hybrid consumers may skip early in the streaming session before settling on a

set of songs they enjoy, and listening to them.

I normalize the mean utility of the outside option to zero:

𝑈𝑖0𝑠 = 𝜖𝑖0𝑠 (3)

4.1.1 Utility of Skipping Songs

To capture the utility of skipping to the next song, consumers form expectations over the

characteristics of the next song, based, generally, on the songs they have received in their

streaming session so far. Their utility from skipping has the following equation:

𝑈𝑆,𝑖𝑗𝑠 = 𝛽𝐸𝑖𝑠[𝑋𝑗|𝑋𝑗 ,𝑠−1] + 𝛾𝑆𝑌𝑖 + 𝜂𝐿𝑠 + 𝜖𝑖 𝑗𝑠 (4)

I refine these expectations using the listening context data from the MSSD. Specifically,

I apply the following rules:

• If consumers are listening to an algorithmic playlist or radio station, then their

expected utility of skipping comes from the average characteristics of the songs they

have received in their streaming session so far.

• If consumers are listening to their own catalog or playlist, or a song they searched

for, then their expected utility of skipping comes from the average characteristics of

the songs in their entire streaming session.
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• If consumers are listening to editorial playlists or top 200 playlists, then their expected

utility of skipping depends on whether they shuffle the playlist: if they do, expected

utility comes from the characteristics of songs received so far; if not, then the expected

utility comes from the average characteristics of the songs in streaming session.

Intuitively, consumers know more about their own playlists, music catalog, or searches,

so their expectations will be more refined than just discovering music on an algorithmic

playlist. If they are listening to an editorial playlist or top 200 playlists, I use shuffling as a

proxy for awareness of songs on the playlist: consumers who do not shuffle may be more

aware of the tracks on the playlist, and therefore more aware of their characteristics, than

those who do not.

4.1.2 Choice Probabilities

In this model, consumers choose whether to listen to the song they receive, to skip it, or

to log off, ending their streaming session and taking an outside option.

The T1EV error term in the utility function allows me to model the choice probabilities

as a conditional logit model. The probability that consumer 𝑖 listens to song 𝑗 in session

position 𝑠, conditional on the song being recommended, is given by:

𝑃(𝑖 listens to 𝑗|RS surfaces 𝑗 to 𝑖)

=
exp(𝛽𝑋𝑗 + 𝛾𝑌𝑖 + 𝜂𝑠)

1 + (exp(𝛽𝑋𝑗 + 𝛾𝑌𝑖 + 𝜂𝑠) + exp(𝛽𝐸𝑖𝑠[𝑋𝑗|𝑋𝑗 ,𝑠−1] + 𝛾𝑌𝑖 + 𝜂𝑠))
(5)

4.2 Recommender System

Recommender systems are an integral component to music streaming, directing con-

sumers towards songs the system thinks they will enjoy. These recommender systems are

functionally trying to solve a multi-armed bandit problem: finding the best product (arm)

to offer to consumers (slot machines), with success being a purchase or interaction with

the product. To train the optimal recommender system, platforms must balance explo-

ration (trying new products) and exploitation (recommending products that are likely to

be successful). Firms typically rely on an 𝜖-greedy algorithm, where the firm chooses the

best product with probability 1 − 𝜖, and a random product with probability 𝜖.

I group these systems into three types: collaborative filtering recommender systems,

content-based recommender systems, and hybrid recommender systems. Collaborative

filtering recommender systems surface products based on products similar users like. For
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example, if person 1 likes songs, X, Y, and Z, and person 2 likes songs W, X, and Y, then

the system may recommend song Z to person 2 and song W to person 1.
24

Content-based

recommender systems decompose products into characteristics, and recommend products

with similar characteristics to those the user has liked in the past. For example, if person

1 likes songs with a high tempo, the system may recommend songs with a high tempo to

person 1.
25

Hybrid recommender systems combine aspects of both collaborative filtering

and content based recommender systems. Most recommender systems are hybrid, albeit

weighted towards one end or the other.

Spotify’s recommender system is a hybrid system weighted heavily towards content-

based recommendations. They use a combination of user and song characteristics to

recommend songs to users. While the recommender system itself is a black box, various

research papers have discussed its mechanisms, and I use these papers for guidance in

constructing my model of the recommender system, particularly McInerney et al. (2018).

McInerney et al. (2018) describes Spotify’s recommender system as having an objective

(or reward) function with the following form:

𝑟𝑖 𝑗 = 𝜎(𝜄1𝑋𝑗 + 𝜄2𝑌𝑖)

In this equation, 𝑟𝑖 𝑗 is the binary outcome from recommending a song 𝑗 to listener

𝑖. 𝑋𝑗 are the song characteristics, and 𝑌𝑖 are the listener characteristics. 𝜄1 and 𝜄2 are

the parameters to be trained. 𝜎 is a sigmoid loss, making this equation a logistic regres-

sion. McInerney et al. (2018) further augment this function with higher-order interactions

between the user and consumer characteristics to obtain more personalized recommen-

dations. They also interact these terms to further personalize the recommendations. To

implement the recommender system, they use a standard 𝜖-greedy algorithm.

I use a logistic regression to model Spotify’s primarily content-based recommender

system. I treat this recommender system as an exogenous technology to which Spotify

has access, and I estimate the parameters of the recommender system using data from

the MSSD. I assume for simplicity that, when Spotify is recommending songs, they are

following a pure exploitation strategy, rather than an 𝜖-greedy strategy.

I estimate the recommender system using the following equation:

𝑃(RS surfaces 𝑗 to 𝑖) =
exp(𝜂1𝑋1𝑗 + 𝜂2

∏𝑁
𝑛=2

𝑋𝑛𝑗 + 𝜂3𝑌𝑖)
1 + exp(𝜂1𝑋1𝑗 + 𝜂2

∏𝑁
𝑛=2

𝑋𝑛𝑗 + 𝜂3𝑌𝑖)
(6)

24. Amazon uses collaborative filtering when recommending products "people like you also bought".

25. Continuing the Amazon example, they use content-based recommendations when describing "similar

products".
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Here, 𝑃(RS surfaces 𝑗 to 𝑖) is estimated probability that Spotify recommends song 𝑗 to

consumer 𝑖. 𝑋1𝑗 are song characteristics from music theory, and 𝑋𝑛𝑗 are machine learning

characteristics, interacted with each other. 𝑌𝑖 are consumer characteristics, and 𝜂1, 𝜂2,

and 𝜂3 are parameters to be estimated. Unlike in my choice model, the outcome variable

𝑃(RS surfaces 𝑗 to 𝑖) is a listen to completion, rather than just enough to qualify as an RBS.

The recommender system also places no value on skipping a song, whereas consumers

may have some expected utility for skipping a song (e.g., to find a song they like more). I

take equation 6 to the MSSD data.

Having described the recommender system and the choice model, I combine these two

models to create the demand producers face:

𝑃(𝑖 listens to 𝑗) = 𝑃(RS surfaces 𝑗 to 𝑖) × 𝑃(𝑖 listens to 𝑗|RS surfaces 𝑗 to 𝑖)
+ (1 − 𝑃(RS surfaces 𝑗 to 𝑖)) × 𝑃(𝑖 listens to 𝑗|RS does not surface 𝑗 to 𝑖)

(7)

For producers, consumers can access their songs in two ways: through the recom-

mender system, or through other means. I treat these other means as the complement to

the probability the recommender system surfaces the song. Intuitively, it can also repre-

sent a function representing consumer awareness of the song outside the recommender

system. Because I observe whether consumers are receiving songs from the recommender

system or from other sources, I estimate separate parameters for each listening type.

This approach builds on Goeree (2008), who using a joint probability to create a demand

structure. She uses this structure to model the demand for computers when consumers

have limited information. In place of a recommender system, she uses advertising to

inform the consumers and construct consideration sets. I do not explicitly construct

consideration sets, because my choice structure is a sequence of binomial listen/skip

choices (with an outside option), rather than a single multinomial choice.

4.3 Supply

Rightsholders are the supply side of the music industry, choosing whether to release songs

to Spotify. They are forward-looking agents, considering both current and future profits

when making their decision. Rightsholders face a fixed cost to release a song, and they

receive revenue each period based on that song’s streamshare.
26

Each rightsholder receives a song from an artist, knowing its characteristics, and they

26. I treat revenue from Spotify as exogenous, because I do not model Spotify as a strategic agent.
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decide whether to pay the fixed cost to release the song on Spotify. In making this decision,

rightsholders consider both the probability the recommender system will amplify their

song, and the probability consumers will listen to their song. I maintain one assumption

about rightsholders in my model:

Assumption 2 Each song has an independent rightsholder (i.e., no multi-product competition),
and each song has an exogenous release date, so firms face a one-time binary release/no-release
decision.

Once a song is on Spotify, it remains on the platform in perpetuity, so rightsholders can

earn revenue in future periods. To effectively make this decision, they must have some

way to model future period profits. Specifically, rightsholders need to model two sets of

evolutionary processes:

• The evolution of rival songs, which affects the probability consumers listen to their

song

• The evolution of the recommender system (i.e., the probability their song is recom-

mended to consumers)

I define𝒳𝑡 as the mean characteristics of all songs on a given day on Spotify Charts, and

I define 𝜙 as the probability the recommender system recommends a song to a consumer

in future periods. With these terms defined, I now define the following first-order Markov

processes by which the recommender system and rival songs evolve:

𝒳𝑡+1 = 𝜈0 + 𝜈1𝒳𝑡 + 𝜖𝒳𝑡 (8)

𝜙 𝑗 ,𝑡+1 = 𝜓0 + 𝜓1𝜙 𝑗𝑡 + 𝜖
𝜙
𝑗𝑡

(9)

To motivate these processes, I use an oblivious equilibrium (Weintraub, Benkard, and

Van Roy 2005) as my solution concept. This equilibrium is a typically used to analyze

dynamic oligopoly models with a large number of firms. In an oblivious equilibrium,

firms make decisions based only on their own state and average industry conditions,

ignoring the specific states of their competitors. Weintraub, Benkard, and Van Roy (2005)

show that, under certain conditions, the oblivious equilibrium is equivalent to the Markov

Perfect Nash Equilibrium. This simplification allows me to tractably estimate my supply

model while capturing the key dynamics in the industry.

As applied to my model, each firm is an oblivious agent, choosing whether to release

its song based on their song’s characteristics, the long-run average characteristics of all
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songs, and the probability the recommender system will recommend their songs. Recall

that each song has its own rightsholder, so each song competes with every other song in

the market, past, present, and future, resulting in thousands of firms.

Having explained how rightsholders act in the model, as well as the motivating solution

concept, I now define their expected profit function:

𝐸[𝜋 𝑗(𝑋𝑗)] = 0.6

(
𝑇∑
𝑡=0

𝛿𝑡𝑅𝑡

(
𝑃(𝑖 listens to 𝑗 with characteristics 𝑋)∑
𝐾 𝑃(𝑖 listens to 𝑘 with characteristics 𝒳)

))
− 𝐹𝑗 (10)

Each period 𝑡, defined as a day, the rightsholder owning song 𝑗 receive a share of

Spotify’s gross revenue 𝑅𝑡 . I define this share as follows:

𝑠 𝑗𝑡 =
ˆ𝑅𝐵𝑆 𝑗𝑡∑

𝑘
ˆ𝑅𝐵𝑆𝑘𝑡

=
𝑃(𝑖 listens to 𝑗 with characteristics 𝑋)∑
𝐾 𝑃(𝑖 listens to 𝑘 with characteristics 𝒳)

This share is the streamshare of song 𝑗 in period 𝑡. 𝛿 is the firm’s discount factor. 𝐹𝑡 is

the fixed cost to release song 𝑗 on Spotify, which varies by day.

This share can be further simplified:

𝑠 𝑗𝑡 =
ˆ𝑅𝐵𝑆 𝑗𝑡∑

𝑘
ˆ𝑅𝐵𝑆𝑘𝑡

=
𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑗 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠

)∑
𝑘 𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑘 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠

)
+

1 − 𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑗 + 𝛾𝑆𝑌𝑖 + 𝜂𝑆𝑠

)∑
𝑘 1 − 𝑃(RS surfaces 𝑗 to 𝑖) × exp

(
𝛽𝑋𝑘 + 𝛾𝑆𝑌𝑖 + 𝜂𝑆𝑠

)
Having decomposed equation 10, we now turn to the entry condition. Because each

rightsholder faces a one-time binary decision to release or not release, they release as long

as the following condition holds:

0.6

(
𝑇∑
𝑡=0

𝛿𝑡𝑅𝑡

(
𝑃(𝑖 listens to 𝑗 with characteristics 𝑋)∑
𝐾 𝑃(𝑖 listens to 𝑘 with characteristics 𝒳)

))
≥ 𝐹𝑗 (11)

Specifically, their expected profit from releasing the song must be nonnegative. If the

expected revenue exceeds fixed cost, the rightsholder releases the song; otherwise, it does

not.

This entry condition provides the upper bound to the fixed cost of releasing a song. I

use data on gross profit margins to scale the expected revenue to a fixed cost observation.
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I assume that fixed costs are independently and identically distributed along a lognor-

mal distribution. I augment this with a heirarchical model, where the parameters of the

lognormal distribution are functions of the song characteristics. Formally, I define 𝐹𝑗 as

follows:

𝐹𝑗 ∼ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑗(𝑋𝑗), 𝜎𝑗(𝑋𝑗))
𝜇𝑗(𝑋𝑗) = 𝜇𝑔 + 𝑋′

𝑗𝛽𝜇

𝜎𝑗(𝑋𝑗) = 𝜎𝑔 + 𝑋′
𝑗𝛽𝜎

𝜇𝑔 and 𝜎𝑔 are global parameters representing the population-level mean and standard

deviation. 𝛽𝜇 and 𝛽𝜎 are 𝑘-dimensional vectors of coefficients capturing the effects of

covariates on the mean and variance, respectively.

4.4 Equilibrium

My solution concept is an oblivious equilibrium (Weintraub, Benkard, and Van Roy 2005)

where consumers optimally choose whether to listen or skip songs in their streaming ses-

sion, or to log off; the recommender system optimally recommends songs to consumers,

seeking to maximize the probability consumers listen to songs to completion; rightshold-

ers, taking the above as given, choose whether to release songs based on the expected

profit from releasing the song; songs enter the market as long as their expected revenue

is greater than their fixed cost.

5 Estimation

My estimation strategy has several stages:

1. Demand and Recommender System estimation

2. Markov Process estimation

3. Expected revenue calculation

4. Fixed cost estimation

In the first stage, I estimate consumer preferences and recommender system prefer-

ences using the MSSD data. I construct separate estimates for consumers who receive

songs from the recommender system, and those who do not. Specifically, I estimate
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𝜃1 = (𝛽, 𝛾, 𝜂) from equations 5 and 6 in this stage. For consumer preferences, I use a

maximum likelihood estimator over choice probabilities, following Train (2009). I identify

my parameters through variation in the choices each consumer faces at each position in

the streaming session. Similarly, I estimate the recommender system parameters using a

maximum likelihood estimator over the probability a consumer completes a song.

In the second stage, I estimate the Markov processes governing the evolution of right-

sholder perception of the recommender system and rival songs. Specifically, I estimate

𝜃2 = (𝜈0, 𝜈1,𝜓0,𝜓1) in this stage. To construct the Markov process for the recommender

system, I use 𝜃1 to predict the probability the recommender system will surface a song to a

consumer, and I compute the average of these probabilities across all songs in the Top 200

each day. I then estimate a SARIMAX model for 𝜓0 and 𝜓1. For the song characteristics,

I compute the average characteristics of all songs on Spotify’s Top 200 each day, and I

estimate the 𝜈0 and 𝜈1 as a Vector Autoregression (VAR) model.

In the third stage, I compute the expected revenue for each song released in 2018.

I limit my computation to songs released between January 1, 2018, and September 30,

2018, to better match my demand and recommender system estimates. For each song, I

compute the left-hand term in equation 10, using the 𝜃1 and 𝜃2 estimates to predict future

streamshare. In the specification with consumer awareness, I conservatively assume that

consumers become aware (outside the recommender system) of a song one year after

release.

When computing the expected revenue, I assume that consumers are premium sub-

scribers, and that they listen in the evening. These are the modal consumer characteristics

in the MSSD data. I also assume that the song is the first one in their streaming session to

normalize the expected revenue estimates.

To compute the rival songs in the streamshare measure, I take 𝒳 for the songs available

on the top 200 in the day the song has been released, and I input these characteristics

to predict the probability the recommender system will surface the rival song. I then

apply that predicted probability to the VAR(1) process to estimate the probability the

recommender system will surface the rival song in future periods. I also apply these

characteristics to the VAR(1) process to estimate the probability consumers will listen to

the rival song.

To account for only observing the top 200 songs in constructing the streamshare mea-

sure, I estimate the total number of streams on Spotify in a given day, and then downscale

the amount of revenue to match the percentage of streams coming from the top 200 songs.

I first assume that the average listener on Spotify spends 125 minutes listening to mu-
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sic each day.
27

Next, I take the average length of streams of Spotify’s Top 200 songs to

estimate the number of songs a listener listens to each day. I then multiply this by the

reported number of users on Spotify to estimate the total number of streams on Spotify

each day. Finally, I divide the number of streams of the top 200 songs by the total number

of streams to estimate the percentage of streams coming from the top 200 songs, and I use

this percentage to downscale the revenue to match the revenue generated by the top 200

songs.

As an alternative approach, I assume that the number of rival songs (each possessing

the same characteristics) is equal to the number of songs on the platform, which is approx-

imately 40m in 2018.
28

This creates a lower bound for the amount of revenue any given

song can generate, but coheres with the idea that each song competes with every other

song on the platform.

Having computed expected revenue, I now use these data as the input to the likelihood

function for the lognormal distribution. I first scale the expected revenue by gross profit

margins observed in the music industry, by label, and treat these scaled revenues as

the fixed costs observations from the lognormal distribution.
29

I estimate the fixed cost

parameters using maximum likelihood estimation. The log-likelihood function for a single

observation is:

ℓ 𝑗(𝜃) = −1

2

log(2𝜋𝜎2

𝑗 ) −
(log(𝐹𝑗) − 𝜇𝑗)2

2𝜎2

𝑗

where 𝜃3 = (𝜇𝑔 , 𝜎𝑔 , 𝛽𝜇, 𝛽𝜎) is the vector of parameters to be estimated. The full log-

likelihood is:

𝐿(𝜃) =
𝑛∑
𝑖=1

ℓ 𝑗(𝜃) (12)

I solve 12 for 𝜃3 using a BFGS algorithm with numerical gradients.

6 Results

Tables 6 and 7 reports consumer demand estimates for both direct selection and recom-

mender system selection:

27. I take an average of the reported listening time of the following two industry reports: IFPI and

Global Web Insights

28. Spotify 2018 Annual Report

29. I use the Earnings before Interest, Taxes, Depreciation, and Amortization (EBITDA) margin for the

major labels to scale the expected revenue for their songs, and a 20% EBITDA margin for independent

labels.
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio

(Robust Std. Error) (Robust Std. Error)

Age -0.0112*** 0.999 0.00161 1.000

(0.000492) (0.00168)

Acousticness 0.0604*** 0.661 0.0423*** 0.689

(0.000639) (0.00196)

Acousticness² -0.0456*** – -0.0378*** –

(0.000111) (0.000252)

Danceability -0.0402*** 0.777 0.150*** 3.287

(0.00112) (0.00362)

Danceability² -0.0112*** – 0.0651*** –

(0.000475) (0.00124)

Duration 0.00342*** 1.000 -0.00254 1.000

(0.000839) (0.00296)

Duration² -0.000722*** – 0.00759*** –

(0.0000857) (0.000446)

Energy -0.00595*** 1.605 -0.0648*** 4.552

(0.00132) (0.00437)

Energy² 0.0459*** – 0.161*** –

(0.000398) (0.00106)

Instrumentalness 0.00115** 0.738 -0.0368*** 0.672

(0.000523) (0.00158)

Instrumentalness² -0.0101*** – -0.00628*** –

(0.0000479) (0.000111)

Liveness 0.0160*** 0.811 0.00530*** 1.061

(0.000533) (0.00177)

Liveness² -0.00832*** – 0.000740*** –

(0.0000677) (0.000168)

Loudness 0.000418 1.000 0.0488*** 1.010

(0.00103) (0.00355)

Loudness² -0.00600*** – -0.0136*** –

(0.000103) (0.000361)

Mode 0.0308*** 1.031 0.0484*** 1.050

(0.001) (0.00313)

Speechiness 0.00132** 0.540 -0.00170 0.629

(0.000511) (0.00170)

Speechiness² -0.0115*** – -0.00829*** –

(0.0000612) (0.000149)

Tempo -0.00257*** 1.000 0.0184*** 1.000

(0.000935) (0.00289)

Tempo² -0.0149*** – 0.00976*** –

(0.000482) (0.00113)

Time Signature 0.0415*** 1.042 -0.0597*** 0.942

(0.00318) (0.0109)

Valence 0.0256*** 0.497 0.0155*** 0.995

(0.000749) (0.00234)

Valence² -0.0730*** – -0.00517*** –

(0.000263) (0.00059)

Model Statistics
Observations 148,822,923 31,238,428

�̄�2
0.018 0.284

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Consumer Demand Estimates - Song Characteristics

Demand within and outside the recommender system is similar, except for song energy, danceability, and

valence.
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio

(Robust Std. Error) (Robust Std. Error)

Time of Day
Morning 0.131*** 1.140 0.150*** 1.162

(0.00136) (0.00415)

Afternoon 0.102*** 1.107 0.121*** 1.129

(0.00121) (0.00371)

Night 0.0417*** 1.043 0.125*** 1.133

(0.00191) (0.00611)

Day of Week
Tuesday 0.0108*** 1.011 0.0289*** 1.029

(0.00180) (0.00538)

Wednesday 0.0163*** 1.016 0.0231*** 1.023

(0.00184) (0.00552)

Thursday 0.00907*** 1.009 0.0207*** 1.021

(0.00183) (0.00551)

Friday 0.00165 1.002 -0.0520*** 0.949

(0.00179) (0.00529)

Saturday -0.00358* 0.996 -0.0220*** 0.978

(0.00186) (0.00568)

Sunday -0.00389** 0.996 -0.0117** 0.988

(0.00184) (0.00566)

User Characteristics
Premium -0.121*** 0.886 0.116*** 1.123

(0.0014) (0.00465)

Model Statistics
Observations 148,822,923 31,238,428

�̄�2
0.018 0.284

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Consumer Demand Estimates - Contextual Characteristics

Demand within and outside the recommender system is similar, except for premium subscription status.
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The results reveal striking differences between how users interact with music through

direct selection versus recommender systems. In direct selection, song characteristics have

more modest effects, with most musical features showing relatively small coefficients. Age

has a small negative effect on direct demand, suggesting users slightly prefer newer songs

when choosing directly. Interestingly, acousticness and valence (emotional positivity)

show positive linear terms but negative quadratic terms in direct selection, indicating

users prefer moderate levels of these characteristics when actively choosing music.

The recommender system demand parameters show notably larger magnitudes and

sometimes different directions of effects compared to direct selection. Most strikingly,

danceability and energy have much stronger positive effects in recommended songs (with

odds ratios of 3.287 and 4.552 respectively) compared to their modest or negative effects in

direct demand. This suggests the recommender system may be effectively surfacing high-

energy, danceable songs that users might not have chosen directly but end up enjoying.

The model fit �̄�2
is also substantially better for recommender system demand (0.284)

compared to direct demand (0.018), indicating that song characteristics are more predictive

of consumption when songs are recommended.

The contextual characteristics also reveal interesting patterns. Premium users are less

likely to engage with directly chosen songs (odds ratio 0.886) but more likely to engage

with recommended songs (odds ratio 1.123), suggesting they may be more trusting of or

receptive to recommendations. They might also be more passive listeners, preferring to

let the recommender system guide their listening. Time of day effects are stronger for both

types of demand during morning and afternoon hours, with slightly larger coefficients

for recommended songs. Day of week effects show that both types of demand are higher

during midweek and lower on weekends, though the negative weekend effect is stronger

for recommended songs, particularly on Fridays (odds ratio 0.949).

Tables 8 and 9 reports the results for the recommender system:
30

The recommender system’s song selection behavior differs notably from how users

engage with its recommendations. While both models show that age negatively influences

recommendations and consumption, the effect is much stronger in the demand model

(coefficient -0.0432 vs 0.00161), suggesting the system may be too aggressive in favoring

newer songs. Similarly, for characteristics like speechiness and instrumentalness, the

system shows strong positive preferences (odds ratios of 1.618 and 1.419 respectively)

that aren’t matched in user engagement, where these features actually show negative

coefficients in the demand model. This mismatch suggests potential areas where the

recommender system could be better aligned with user preferences.

30. Introducing interactions does not materially affect many of these estimates.
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Dependent variable: Song Completion
Estimate Odds Ratio

(Std. Error)

Age -0.0432*** 0.995

(0.000168)

Acousticness 0.0395*** 1.058

(0.000280)

Acousticness² -0.0065*** –

(0.000189)

Danceability -0.0530*** 1.021

(0.000414)

Danceability² 0.0181*** –

(0.000439)

Duration -0.2395*** 0.998

(0.000322)

Duration² 0.0161*** –

(0.0000999)

Energy 0.0178*** 1.345

(0.000454)

Energy² 0.0222*** –

(0.000383)

Instrumentalness 0.0304*** 1.419

(0.000661)

Instrumentalness² 0.0059*** –

(0.000162)

Liveness -0.0307*** 1.192

(0.000286)

Liveness² 0.0098*** –

(0.000106)

Loudness -0.0235*** 0.995

(0.000430)

Loudness² 0.0022*** –

(0.0000996)

Mode 0.0113*** 1.011

(0.000329)

Speechiness -0.0815*** 1.618

(0.000267)

Speechiness² 0.0199*** –

(0.0000847)

Tempo -0.0076*** 1.000

(0.000308)

Tempo² 0.0212*** –

(0.000503)

Time Signature 0.0336*** 1.116

(0.001081)

Valence 0.0345*** 0.943

(0.000254)

Valence² -0.0160*** –

(0.000260)

Model Statistics
Observations 180,061,351

Pseudo 𝑅2
0.006733

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Recommender System Estimates - Song Characteristics

The recommender system prioritizes shorter, more energetic songs with a standard time signature
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Dependent variable: Song Completion
Estimate Odds Ratio

(Std. Error)

Time of Day
Morning 0.1531*** 1.165

(0.000437)

Afternoon 0.0963*** 1.101

(0.000392)

Night 0.1706*** 1.186

(0.000624)

Day of Week
Tuesday -0.0082*** 0.992

(0.000570)

Wednesday -0.0088*** 0.991

(0.000584)

Thursday -0.0177*** 0.982

(0.000583)

Friday -0.0215*** 0.979

(0.000571)

Saturday -0.0166*** 0.984

(0.000597)

Sunday -0.0061*** 0.994

(0.000591)

User Characteristics
Premium -0.0673*** 0.935

(0.000434)

Model Statistics
Observations 180,061,351

Pseudo 𝑅2
0.006733

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 9: Recommender System Estimates - Contextual Characteristics

Premium consumers are less likely to complete songs
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The energy and danceability parameters reveal particularly interesting dynamics.

While the demand model showed users strongly engage with high-energy, danceable

recommended songs (odds ratios of 4.552 and 3.287), the recommender system model

shows more modest positive effects for energy (odds ratio 1.345) and even a slight nega-

tive coefficient for danceability. This suggests the system may be under-recommending

songs with these characteristics relative to user preferences. The quadratic terms for many

characteristics also differ between the models, indicating that the system’s understand-

ing of optimal levels for these features might not perfectly align with what drives user

engagement.

The contextual effects show some alignment but also key differences. The time-of-

day patterns are similar, with both demand and consumption showing higher activity

during morning and night hours. However, the day-of-week patterns differ notably:

while the demand model showed higher engagement during midweek, the recommender

system model shows consistently negative coefficients for all days relative to Monday. For

premium users, both models show negative effects (odds ratios of 0.935 for provision and

0.886 for demand), suggesting the system may be appropriately calibrated in how it treats

premium status. Intuitively, premium subscribers, facing no ad interruptions, may be

more likely to skip songs and search, whereas ad-supported users would prefer to avoid

ads, and take a more passive approach to listening. The much lower pseudo-R² for the

recommender system model (0.007 vs 0.284) suggests that these observable characteristics

explain far less of the system’s recommendations than they do user engagement.

Table 10 reports the results for the song characteristic Markov processes:

This VAR suggests strong, stationary processes for each song characteristic with respect

to its own lag. All own-lag coefficients are statistically significant, and all of them are less

than 0.95. The drift terms are statistically significant, but they are all very close to zero,

further suggesting that the processes are stationary. The constant terms are sometimes

significant, and most of the cross-characteristic lags are statistically insignificant. This

suggests that the processes are relatively independent of each other.

Table 11 reports the results for the recommender system Markov process estimation:

This SARIMAX model suggests that the recommender system is relatively stable, with

a high persistence term, but not so high as to suggest that the system is nonstationary. The

drift term is statistically significant, but close to zero, further suggesting that the system

is stationary.

Figure 12 plots the distribution of expected revenue for songs released in 2018 that

entered Spotify’s top 200 at least once:

These songs have an expected revenue ranging from $20,000 to $500,000, with a mean
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Dependent variable: Predicted Probability (�̂�𝑡)
�̂�𝑡−1 0.734

∗∗∗

(0.019)

Drift 0.000
∗∗∗

(0.000)

Constant 0.092
∗∗∗

(0.007)

Observations 1826

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 11: Markov Process Estimation for Recommender System

The recommender system has a high, statistically significant, persistence term, suggesting that it is relatively

stable.

Figure 12: Expected Revenue of Songs Released in 2018 that Entered Spotify’s Top 200

These songs have a mean expected revenue of $213,000.

at $213,000. The distribution is similar under my alternative approach, but with much

lower amounts, as the rival songs include all songs on the platform. I compute a mean

expected revenue of $60.09 for all songs.

My fixed cost estimation produces estimates of the location (𝜇) and (𝜎) parameters of
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Location (𝜇) Scale (𝜎)
Estimate Estimate

(Std. Error) (Std. Error)

Intercept 5.091*** -1.945***

(0.013) (0.062)

Audio Features
Acousticness 0.017*** 0.027

(0.006) (0.028)

Instrumentalness -0.056** 0.121**

(0.022) (0.060)

Liveness -0.008 0.153***

(0.006) (0.028)

Speechiness -0.008* -0.155***

(0.004) (0.023)

Loudness -0.009 -0.272***

(0.008) (0.042)

Duration
Duration -0.041*** -0.098***

(0.008) (0.034)

Duration² 0.010 0.240***

(0.008) (0.033)

Record Label
Sony -0.052*** 0.101

(0.015) (0.086)

Universal 0.062*** -0.075

(0.012) (0.068)

Warner 0.038** 0.273***

(0.017) (0.087)

Model Statistics
Observations 1,067

𝑅2
0.108 0.971

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 12: Fixed Cost Parameter Estimates

Song characteristics and label fixed effects significantly affect the distribution of fixed costs.

the lognormal fixed cost distribution as a function of song characteristics.

Table 12 reports the results of the fixed cost estimation:

The location model results reveal several key determinants of fixed costs in music

production. Duration shows a significant negative linear effect (-0.041), indicating that
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longer songs generally cost less to produce. Among audio features, instrumentalness

has the largest negative effect (-0.056), suggesting that instrumental tracks may be less

expensive to produce, possibly due to lower costs associated with not needing vocalists.

There are also significant differences across record labels - Universal and Warner songs

show higher average fixed costs (coefficients of 0.062 and 0.038 respectively) while Sony

songs have lower costs (-0.052), which could reflect different production strategies or

accounting practices across labels.

The scale model results reveal interesting patterns in cost variability. Warner shows

significantly higher cost variability (0.273), suggesting they may take more risks in produc-

tion budgets compared to Universal and Sony, whose variance effects are not statistically

significant. Among audio features, liveness and instrumentalness are associated with

higher cost variability (0.153 and 0.121), while speechiness and loudness are associated

with lower variability (-0.155 and -0.272). This suggests that live-recording and instru-

mental elements introduce more uncertainty into production costs, while speech elements

and production choices around loudness may follow more standardized cost structures.

Duration shows a U-shaped relationship with cost variability, with the negative linear

term (-0.098) and positive quadratic term (0.240) indicating that medium-length songs

have the most predictable costs.

I use these estimates to compute the lognormal distribution for each song, and report

the median 𝜇 for each song as its fixed cost.

Figure 13 plots the distribution of median fixed costs predicted by the model:

The fixed cost of releasing a song on Spotify ranges from $120,000 to $220,000, with

a median of $170,000. In comparison, the fixed cost under my alternative approach

(competing with all songs) is lower, with a median of $82.10.

My estimated median fixed cost for songs in the top 200 is close to a report from Chace

(2011), which estimated the production and recording costs of Rihanna’s "Man Down" at

$78,000 in 2011 dollars ($88,000 in 2017 dollars). The median for my alternative approach is

also close to the fixed cost estimate in Aguiar and Waldfogel (2018). They find that, in their

imperfect foresight model, the fixed cost is $18.97 ($20.92 in 2017 dollars), approximately

$20 less than my estimate. Several factors explain this difference. First, their model only

looks at the revenue generated by the song in 2011. I model songs more dynamically,

looking at revenue generated in the first three years of release. Additionally, they estimate

a single fixed cost, assuming the fixed cost is the lowest expected revenue for all songs

released in a year. In contrast, I estimate a distribution of fixed costs. Moreover, they

estimate the fixed cost for a digital release (e.g., on iTunes), which may have different fixed

costs than a release on Spotify.

42



Figure 13: Distribution of Estimated Fixed Costs

These songs have a median fixed cost of $170,000.

7 Counterfactual Analysis

Having estimated demand for song characteristics, the recommender system preferences,

and the fixed cost to releasing a song onto Spotify, I now turn to the counterfactual

analysis that can answer the question this paper poses: whether recommender systems

have affected the kind of music record labels are releasing. To isolate the impact of

recommender systems specifically, I conduct two counterfactuals.
31

In the first, I construct

a random recommender system, rather than one which relies on song and consumer

characteristics.

7.1 Random Recommendations

Intuitively, this random recommender is akin to having no recommender system at all, in-

sofar as the recommendations will be pure noise. It also effectively simulates a naive search

process, wherein consumers sample new songs from a uniformly random distribution. I

implement this counterfactual by using the following process:

31. I also conduct a simulated counterfactual with an oracular recommender system. See the appendix

for details.
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1. Draw 500 consumers and give them preferences from the demand estimates. I

sample from the distribution of consumer characteristics in the data to construct

values for those parameters.

2. Simulate a streaming session of 15 songs for each consumer, drawing from songs

released before 2018.

3. Take the average of those songs to generate the utility of skipping a song.

4. Provide a new release to each consumer, and compute the choice probability of

listening to the song.

5. Repeat this process for all songs released in the first three quarters of 2018.

6. Compute the expected revenue generated for these new releases, assuming each

song has a 25% chance of being recommended, and compare it to the estimated

revenue generated by the model.

First, I compare average expected profit for songs. Figure 14 reports the results of this

comparison:

Each observation in this figure represents a song released in the first three quarters of

2018. Note that some of the estimated net profits are negative, because the median fixed

cost estimated by the parameters of the lognormal distribution is higher than the expected

revenue. Intuitively, it is likely that the realized fixed cost for those songs is lower than

the median fixed cost. Many songs become unprofitable when random recommendations

are used. Indeed, of the 1053 songs I observe that were released in the first three quarters

of 2018, 274 (26%) are unprofitable. For those songs that are profitable, their gross profit

margin is 11.9%, compared to the average of 20% observed in the industry.

I now turn to some song characteristic results and welfare implications of my counter-

factual analysis. Figure 15 reports the average duration of songs between profitable and

unprofitable songs.

The average duration of songs of profitable songs is 217 seconds, and the average du-

ration of unprofitable songs is 184 seconds. This difference is significant at the 5% level.

Moreover, the unprofitable songs are more homogeneous, as the standard deviation of

duration is 1.75 seconds, compared to 2.61 seconds for profitable songs. The difference

in distributions is also significant at the 5% level. This suggests that introducing recom-

mender systems allows shorter, more homogeneous songs to enter the market and find an

audience.
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Figure 14: Counterfactual Expected Profit - Random Recommendations

Many songs become unprofitable when random recommendations are used.

Song valence represents another example of the differences between profitable and

unprofitable songs. Valence is a measure of the emotional positivity of a song, with

higher values indicating more positive emotions. Figure 16 reports the average valence of

songs between profitable and unprofitable songs.

The average valence of profitable songs is 0.457, and the average valence of unprofitable

songs is 0.385. This difference is significant at the 1% level. Moreover, the distribution of

energy is very clearly right-shifted for unprofitable songs, compared to profitable songs.

Table 13 reports the average values of other song characteristics for profitable and un-

profitable songs, the difference in means, and the difference in distributions (as evaluated

by a KS-Test):

The data reveals several striking differences between profitable and unprofitable songs’

musical characteristics under random recommendations, with the Kolmogorov-Smirnov

tests indicating significantly different distributions for many key features (𝑝 < 0.001).

Most notably, profitable songs are significantly longer, with an average duration of about
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Figure 15: Counterfactual Duration - Random Recommendations

Unprofitable songs are shorter and more homogeneous than profitable songs.

217 seconds compared to 184 seconds for unprofitable songs - a 33-second difference

that reflects fundamentally different distributions in song length (𝑝 ≈ 0). Similarly, the

distributions of both danceability and valence differ significantly between profitable and

unprofitable songs (both 𝑝 ≈ 0), with profitable songs showing higher values in both

measures (danceability: 0.723 vs 0.619; valence: 0.457 vs 0.385). The mode difference of

-0.166 also reflects distinctly different distributions (𝑝 ≈ 0), indicating profitable songs are

systematically more likely to be in a major key.

While some characteristics show differences in means, their distributional differences

are less pronounced. For instance, despite mean differences in tempo, liveness, and

speechiness, their KS test p-values (0.0184, 0.0209, and 0.0212 respectively) suggest more

subtle distributional differences that might not be economically meaningful. Most notably,

instrumentalness shows virtually identical distributions between profitable and unprof-

itable songs (KS p-value = 0.9359), despite a small difference in means. Overall, this

comparison suggests that the recommender systems allows for shorter, more homoge-

neous, and more energetic songs to enter the market.

Finally, I turn to the welfare implications of my counterfactual analysis. I compute the

consumer surplus generated by all the songs in the release set, as well as the set of surviving

songs, by taking the log-sum of the exponentiated utility, following Anderson, Palma, and
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Figure 16: Counterfactual Valence - Random Recommendations

Unprofitable songs are less positive-sounding than profitable songs.

Thisse (1992). Formally, I define consumer surplus with the following equation:

𝐶𝑆 = log

(
𝑁∑
𝑖=1

exp

(
𝛽𝑋𝑗 + 𝛾𝐿𝑌𝑖 + 𝜂𝐿𝑠

))
(13)

Here, 𝑁 represents the number of songs in the set, rather than the binomial skip-listen

decision. Note that this measure of consumer surplus is in utils, as there is no price

coefficient against which to scale the results.

I find that consumer surplus is 3.9% higher when targeted recommender systems

are used, compared to when random recommendations are used. Restated, random

recommender systems result in a 3.8% decrease in consumer surplus. This suggests that

recommender systems have increased consumer surplus by allowing for more songs to

enter the market, and for consumers to find songs that they enjoy more easily.

7.2 Popular Recommendations

The second counterfactual analysis I conduct is a popular recommender system. It is

similar to placing a ban on using consumer data for recommendations, and relying only on

the popularity of songs. This recommender system also replicates the market environment
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Feature Profitable Unprofitable Diff KS-Test P-Value

Duration (s) 216.872 183.730 -33.143*** 0.0000

(1.751) (2.605)

Tempo 125.093 123.233 -1.860 0.0184

(1.038) (2.030)

Energy 0.628 0.639 0.011 0.0015

(0.006) (0.007)

Danceability 0.723 0.619 -0.104*** 0.0000

(0.005) (0.007)

Valence 0.457 0.385 -0.073*** 0.0000

(0.007) (0.013)

Acousticness 0.190 0.251 0.061*** 0.0004

(0.007) (0.017)

Instrumentalness 0.007 0.012 0.005 0.9359

(0.002) (0.005)

Liveness 0.184 0.167 -0.017 0.0209

(0.005) (0.008)

Speechiness 0.162 0.163 0.001 0.0212

(0.005) (0.010)

Loudness -6.288 -6.603 -0.315 0.0269

(0.084) (0.145)

Mode 0.641 0.474 -0.166*** 0.0000

(0.017) (0.030)

Table 13: Counterfactual Song Characteristics - Random Recommendations

Unprofitable songs are shorter, less danceable, and less positive-sounding than profitable songs.

that existed prior to Spotify, when consumers would purchase singles on iTunes. At the

time, the iTunes store did not have a recommender system; instead, it showed users

what the top-selling singles and albums were. I replicate this by recommending songs in

proportion to their listening shares.

I implement this counterfactual in the following way:

1. Draw 500 consumers and give them preferences from the demand estimates. I

sample from the distribution of consumer characteristics in the data to construct

values for those parameters.

2. Simulate a streaming session of 15 songs for each consumer, drawing from songs

released before 2018.

3. Take the average of those songs to generate the utility of skipping a song.
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Figure 17: Counterfactual Expected Profit - Popular Recommendations

A superstar effect occurs with popular recommendations: many songs become unprofitable in expectation,

but some become highly profitable.

4. Provide a new release to each consumer, and compute the choice probability of

listening to the song.

5. Repeat this process for all songs released in the first three quarters of 2018.

6. Compute the share of listens by release day, and set the recommendation probability

of each song to be equal to its listening share.

7. Compute the expected revenue generated for these new releases and compare it to

the estimated revenue generated by the model.

First, I compare average expected profit for songs. Figure 17 reports the results of this

comparison:

Each observation in this figure represents a song released in the first three quarters

of 2018. Whereas random recommendations reduced the expected profit of all songs,

49



Figure 18: Counterfactual Duration - Popular Recommendations

Unprofitable songs have the same length as profitable songs under popular recommendations.

popular recommendations help some songs and hurt others. On average, however, songs

are worse off when popular recommendations are used. Indeed, of the 1053 songs I observe

that were released in the first three quarters of 2018, only 291 (27.6%) are profitable. For

those songs that are profitable, their gross profit margin is 41.4%, compared to the average

of 20% observed in the industry.

I now turn to some song characteristic results and welfare implications of my counter-

factual analysis. Figure 18 reports the average duration of songs between profitable and

unprofitable songs.

The average duration of songs of profitable songs is 217 seconds, and the average

duration of unprofitable songs is 205 seconds. This difference is significant at the 1% level.

Table 14 reports the average values of other song characteristics for profitable and un-

profitable songs, the difference in means, and the difference in distributions (as evaluated

by a KS-Test):

The data shows more modest differences between profitable and unprofitable songs

under popular recommendations. The most notable difference remains duration, with

profitable songs being approximately 12 seconds longer on average (217.3 vs 205.5 sec-

onds), and the Kolmogorov-Smirnov test (𝑝 = 0.0091) confirming significantly different
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Feature Profitable Unprofitable Diff KS-Test P-Value

Duration (s) 217.318 205.454 -11.864*** 0.0091

(2.986) (1.929)

Tempo 123.786 124.777 0.991 0.0505

(1.646) (1.122)

Energy 0.609 0.639 0.030*** 0.0594

(0.010) (0.005)

Danceability 0.712 0.689 -0.023** 0.0004

(0.009) (0.005)

Valence 0.444 0.436 -0.008 0.3223

(0.012) (0.008)

Acousticness 0.211 0.206 -0.005 0.4172

(0.014) (0.008)

Instrumentalness 0.009 0.008 -0.000 0.2917

(0.003) (0.002)

Liveness 0.178 0.181 0.002 0.3646

(0.007) (0.005)

Speechiness 0.150 0.166 0.016* 0.4404

(0.007) (0.005)

Loudness -6.441 -6.370 0.070 0.9672

(0.148) (0.084)

Mode 0.643 0.578 -0.064 0.3309

(0.028) (0.018)

Table 14: Counterfactual Song Characteristics - Popular Recommendations

Unprofitable songs are shorter, less danceable, and more energetic.

distributions of song lengths. Danceability also shows a statistically significant difference

both in means and distributions (𝑝 = 0.0004), though the economic significance is rela-

tively small with profitable songs scoring 0.712 versus 0.689 for unprofitable ones. Energy

levels show a significant mean difference of 0.030 higher for unprofitable songs, though

the distributional difference is marginally significant (𝑝 = 0.0594).

Notably, many musical characteristics show no significant differences in either means or

distributions between profitable and unprofitable songs. Features such as valence, acous-

ticness, instrumentalness, liveness, and loudness all have high KS test p-values (ranging

from 0.32 to 0.97), suggesting very similar distributions between the two groups. Even

tempo, which differs by about 1 BPM, shows only marginally significant distributional dif-

ferences (𝑝 = 0.0505). Overall, popular recommendations appear to have a more modest

impact on song characteristics compared to random recommendations, with only dura-

tion and danceability showing significant differences between profitable and unprofitable
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Figure 19: Counterfactual Danceability - Popular Recommendations

Unprofitable songs are less danceable than profitable songs under popular recommendations.

songs.

Figure 19 plots the distribution of song danceability for profitable and unprofitable

songs:

The profitable songs are more danceable than unprofitable songs, and the entire dis-

tribution of danceability is right-shifted for profitable songs.

Finally, I turn to the welfare implications of my counterfactual analysis. I find that con-

sumer surplus is 14.6% higher when targeted recommender systems are used, compared

to popular recommendations. Restated, random recommender systems result in a 12.9%

decrease in consumer surplus.

8 Conclusion

As recommender systems become increasingly integrated into the US economy, it is

paramount that we understand their impact on both consumer demand and equilibrium

supply decisions. This paper builds a structural model of the music streaming industry

to estimate how these systems have influenced music production and shaped the sound

of popular music. Because the music industry has historically been at the vanguard of
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technological adoption and disruption, understanding the impact of recommender sys-

tems on music releases can yield valuable insights into how these systems may affect other

content-driven industries such as film, television, and digital commerce.

Using rich data on streaming sessions and song characteristics, I find that recom-

mender systems have indeed changed the sound of music. The introduction of algorith-

mic recommendations has incentivized the release of shorter, more homogeneous songs

optimized for the platform’s objectives. However, these changes come with important

welfare implications: while recommender systems have rendered songs more uniform in

some dimensions, they have also enabled more songs to profitably enter the market and

find their audience. My estimates suggest that this has increased consumer surplus by

approximately 4% compared with a random recommendation system.

A key finding is the misalignment between recommender system preferences and

consumer preferences. This partly stems from divergent incentives between platforms and

rightsholders: while rightsholders want consumers to listen to at least 30 seconds of their

songs to earn royalties, Spotify’s recommender system is optimized for complete listens to

reduce royalty payouts. In counterfactual analyses without algorithmic recommendations,

I find that songs align more closely with raw consumer preferences, though fewer songs

are profitable enough to be released.

My analysis of alternative recommendation schemes reveals important trade-offs. A

popularity-based system that recommends songs based purely on aggregate listening

statistics would generate a strong superstar effect: although it would make some songs

highly profitable, it reduces overall consumer surplus by 13% compared with personalized

recommendations. This suggests that while current recommender systems may reduce

musical diversity in some dimensions, they help surface a wider variety of songs that

appeal to different consumer tastes.

These findings have significant implications for platform regulation and competition

policy. As regulators scrutinize digital platforms’ use of algorithms, my results highlight

both the efficiency gains from personalized recommendations and their potential to shape

creative production. The framework developed here could inform antitrust analysis of

other platforms on which algorithmic recommendations mediate between producers and

consumers.

Several promising avenues exist for future research. First, extending this model to other

content platforms, particularly short-form video services like TikTok, in which consumers

directly choose to skip or watch videos and content is almost entirely algorithm-driven,

could yield insights into how recommender systems shape creative production more

broadly. Second, incorporating random coefficients would enrich the consumer demand
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structure and better capture preference heterogeneity. Third, endogenizing platform

decisions with respect to pricing and recommendation algorithms would allow for deeper

analysis of platform market power and the strategic manipulation of recommendations.

Finally, examining how recommender systems affect market concentration and creator

inequality remains an important question.

This research contributes to our understanding of how algorithmic systems shape

markets and creative production in the digital economy. As these systems become more

prevalent across industries, the methods and insights developed here can inform both

managerial decisions and policy discussions regarding the regulation of digital platforms

and their recommendation algorithms.
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Appendix 1: Robustness Check of Demand Preferences over
Time

Throughout this paper, I assume that consumer preferences are fixed over time. It is

reasonable to claim, however, that these preferences can fluctuate over time, and that

firms are responding to these fluctuations as well as the recommender system. To test

this assumption, I conduct two robustness checks on consumer-preferences: a reduced-

form difference-in-differences analysis, and a discrete choice model with time-varying

coefficients.

For both of these analyses, I use my Spotify charts data, and examine the choice

to listen as a function of song characteristics and time fixed effects. In my reduced-form

specification, I interact song length with a time trend, to see the impact of these variables on

the number of streams a song receives. In my discrete choice model, I assume consumers

choose one song on the Spotify charts to listen to, and I estimate the probability they listen

to a song as a function of song characteristics and time fixed effects.

8.1 Reduced Form Analysis

I estimate the following equation:

𝑙𝑜𝑔(Streams𝑗𝑡) = 𝛼 + 𝛽1Duration𝑗 + 𝛽2Time Trend𝑡

+ 𝛿(Duration × Time Trend)𝑗𝑡 + 𝛾𝑋𝑗 + 𝜂𝑡 + 𝜖 𝑗𝑡
(14)

Here, Streams𝑗𝑡 is the number of streams song 𝑗 receives on day 𝑡, Duration𝑗 is the

duration of song 𝑗, and Time Trend𝑡 is the time trend for day 𝑡. Our coefficient of interest

is 𝛿, which captures the impact of song length on streams over time. I control for other

song characteristic and week-of-year fixed effects.

Table 15 reports the results of this regression:

I find that the coefficient on the interaction is positive and significant at the 1% level,

suggesting that consumer preferences are changing over time. Specifically, this result

suggests that consumers are becoming more likely to listen to longer songs over time.

This effect, however, is not economically meaningful. The coefficient on the interaction

term is 0.00002, suggesting that a one-day change in the data, holding duration constant,

increases streams by 0.002%. From the beginning to the end of the five-year sample period,

this effect only amounts to an approximately 3% increase in streams.

This analysis, however, does not control for the growth in Spotify’s user base, which
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Dependent variable: 𝑙𝑜𝑔(Streams)
Intercept 12.605

∗∗∗

(0.008)

Duration -0.027
∗∗∗

(0.002)

Duration
2

0.0001

(0.000)

Time Trend 0.00003
∗∗∗

(0.000)

Duration × Time Trend 0.00002
∗∗∗

(0.000)

Observations 364,081

𝑅2
0.019

Adjusted 𝑅2
0.019

F Statistic 97.228
∗∗∗

(df=73; 364007)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Other song characteristics and week fixed effects omitted for brevity. See Appendix

Table 15: Difference-in-Differences Results

Consumer preferences are changing over time, but not at an economically meaningful rate.

could also be driving this effect. A demand model with time-varying coefficients can

better control for this effect.

8.2 Discrete Choice Model

I construct a discrete-choice model where consumers choose one song on Spotify to listen

to. They can choose from among the top 50 songs on Spotify in a given week, with any

songs outside the top 50 (positions 50-200) being an outside option. This captures choice

on Spotify’s Weekly Top 50 chart.

Consumers have the following utility function:

𝑈𝑖 𝑗𝑡 𝑖 = 𝛼 + 𝛽1Duration𝑗+
+ 𝛿(Duration × Time Trend𝑗𝑡) + 𝛾𝑋𝑗 + 𝜂𝑡 + 𝜖𝑖 𝑗𝑡

(15)

Here, 𝑈𝑖 𝑗𝑡 is the utility consumer 𝑖 receives from listening to song 𝑗 on day 𝑡, and 𝛽𝑖1
is the preference for song length. As before, 𝛿 captures the impact of song length on

streams over time. My other control variable includes month fixed effects, to control for
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Dependent variable: 𝑙𝑜𝑔(Market Share) − 𝑙𝑜𝑔(Outside Share)
Duration −0.487

∗∗∗

(0.059)

Duration
2

0.006

(0.005)

Duration × Time Trend 0.003
∗∗∗

(0.0003)

Observations 10,350

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Other song characteristics and month fixed effects omitted for brevity. See Appendix

Table 16: Discrete Choice Model Results

Consumer preferences are changing over time, but not at an economically meaningful rate.

seasonality in music listening.

I estimate this model using PyBLP, instrumenting duration with characteristic of rival

songs.

Table 16 reports the results of this regression:

Similar to the difference-and-difference analysis, I find that the coefficient on the inter-

action term positive, significant, but not economically meaningful. This coefficient has a

less direct interpretation, as it is part of a discrete choice model, rather than a reduced-form

regression.

In both cases, I find that consumer preferences for song duration are increasing over

time, but not at an economically meaningful rate. Additionally, this movement is positive,

rather than negative, suggesting that the trend towards shorter songs is not driven by

consumer preferences, but rather by other factors. This result suggests that the model’s

assumption of fixed consumer preferences is reasonable, and that the model is capturing

the impact of the recommender system on song releases.

Appendix 2: Nested Logit Specification

In many papers in industrial organization, the researcher specifies a nested logit model,

with the outside option as its own nest. Such a choice structure would look like the

following figure:

I estimate a conditional logit and nested logit model to compare the two. Following

Reimers and Waldfogel (2023), I estimate the nested logit model in a bottom-up fashion,
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Receive Song

Stay on Spotify

Listen

Skip to

Next Song

Log Off

Outside

Option

Figure 20: Nested Consumer Decision Tree

The consumer first chooses whether to stay on Spotify, then whether to skip or listen to a song.

estimating the inside options first, then the nest parameter.

Tables 17 and 18 reports consumer demand estimates for both the conditional logit

and nested logit structure for consumers using the recommender system:

The coefficients in each model are identical. Additionally, the nested logit parameter,

𝜎, is one, suggesting that the nested logit collapses into a conditional logit model.

Appendix 3: Oracular Recommender Counterfactual

The second counterfactual analysis I conduct is an oracular recommender system. I

define an oracular recommender as one where the recommender is capable of giving the

best possible song to each consumer, according to each consumer’s preferences. Such a

recommender system tends not to be feasible for several reasons: insufficient data, the cost

of specifying such a granular model, and countervailing financial incentives. Bourreau

and Gaudin (2022) and Reimers and Waldfogel (2023) both describe models in which

platforms have incentives to bias recommender systems to maximize their own profit.

I implement this counterfactual in the following way:

1. Draw 10000 consumers and give them preferences from the demand estimates. I

sample from the distribution of consumer characteristics in the data to construct

values for those parameters.

2. Simulate a streaming session of 20 songs for each consumer, drawing from songs in

the release window.

3. Compute the consumer surplus of this session, as well as the average song charac-

teristics
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio

(Robust Std. Error) (Robust Std. Error)

Age 0.00161 1.000 0.00118 1.000

(0.00168) (0.00168)

Acousticness 0.0423*** 0.689 0.0420*** 0.688

(0.00196) (0.00197)

Acousticness² -0.0378*** – -0.0378*** –

(0.000252) (0.000253)

Danceability 0.150*** 3.287 0.150*** 3.287

(0.00362) (0.00385)

Danceability² 0.0651*** – 0.0651*** –

(0.00124) (0.00124)

Duration -0.00254 1.000 -0.00159 1.000

(0.00296) (0.00297)

Duration² 0.00759*** – 0.00758*** –

(0.000446) (0.000447)

Energy -0.0648*** 4.552 -0.0653*** 4.545

(0.00437) (0.00444)

Energy² 0.161*** – 0.161*** –

(0.00106) (0.00109)

Instrumentalness -0.0368*** 0.672 -0.0372*** 0.671

(0.00158) (0.00167)

Instrumentalness² -0.00628*** – -0.00628*** –

(0.000111) (0.000111)

Liveness 0.00530*** 1.061 0.00535*** 1.060

(0.00177) (0.00178)

Liveness² 0.000740*** – 0.000702*** –

(0.000168) (0.000168)

Loudness 0.0488*** 1.010 0.0483*** 1.010

(0.00355) (0.00358)

Loudness² -0.0136*** – -0.0136*** –

(0.000361) (0.000366)

Mode 0.0484*** 1.050 0.0484*** 1.050

(0.00313) (0.00315)

𝜇 – – 1*** –

– (0.00927)

Speechiness -0.00170 0.629 -0.00158 0.629

(0.00170) (0.00172)

Speechiness² -0.00829*** – -0.00830*** –

(0.000149) (0.000156)

Tempo 0.0184*** 1.000 0.0192*** 1.000

(0.00289) (0.00296)

Tempo² 0.00976*** – 0.00972*** –

(0.00113) (0.00113)

Time Signature -0.0597*** 0.942 -0.0545*** 0.947

(0.0109) (0.0109)

Valence 0.0155*** 0.995 0.0158*** 0.996

(0.00234) (0.00235)

Valence² -0.00517*** – -0.00517*** –

(0.00059) (0.000591)

Model Statistics
Observations 31,238,428 31,238,428

�̄�2
0.284 0.284

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 17: Logit and Nested Logit Demand Estimates - Song Characteristics
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Dependent variable: Royalty Bearing Stream (RBS)
Direct Selection Recommender System Selection

Estimate Odds Ratio Estimate Odds Ratio

(Robust Std. Error) (Robust Std. Error)

Time of Day
Morning 0.150*** 1.162 0.151*** 1.163

(0.00415) (0.00423)

Afternoon 0.121*** 1.129 0.122*** 1.130

(0.00371) (0.00376)

Night 0.125*** 1.133 0.124*** 1.132

(0.00611) (0.00613)

Day of Week
Tuesday 0.0289*** 1.029 0.0296*** 1.030

(0.00538) (0.00538)

Wednesday 0.0231*** 1.023 0.0246*** 1.025

(0.00552) (0.00553)

Thursday 0.0207*** 1.021 0.0225*** 1.023

(0.00551) (0.00552)

Friday -0.0520*** 0.949 -0.0508*** 0.950

(0.00529) (0.00532)

Saturday -0.0220*** 0.978 -0.0211*** 0.979

(0.00568) (0.00568)

Sunday -0.0117** 0.988 -0.0107* 0.989

(0.00566) (0.00566)

User Characteristics
Premium 0.116*** 1.123 0.115*** 1.122

(0.00465) (0.00467)

Model Statistics
Observations 31,238,428 31,238,428

�̄�2
0.284 0.292

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 18: Logit and Nested Logit Demand Estimates - Contextual Characteristics
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Figure 21: Counterfactual Consumer Surplus - Oracular Recommendations

The oracular recommender increases consumer surplus by 5.3% compared to the simulated streaming

sessions.

4. Compute the consumer surplus of the 20 highest-utility songs, as well as the average

song characteristics of those songs.

5. Compare results between the two sets of songs.

First, I compare consumer surplus generated by these streaming sessions. Figure 21

reports the results of this comparison:

Each blue bar represent streaming sessions, and the red line represents the utility-

maximizing streaming session. The oracular recommender increases consumer surplus

by 16.6% compared to the simulated streaming sessions. This difference is statistically

significant at the 1% level.

Table 19 reports the average values of song characteristics for the simulated streaming

sessions and the utility-maximizing streaming sessions, and the difference in means:

Songs in the optimal streaming session is more acoustic, more danceable, and less

energetic than the simulated sessions. This suggests that the oracular recommender

system is more likely to recommend songs slower songs than a random recommender.
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Characteristic Mean (Simulated) Mean (Optimal) Difference

Acousticness 0.20 0.40 -0.19***

(-3.83)

Age 0.05 0.15 -0.10

(-1.38)

Danceability 0.70 0.76 -0.06*

(-1.86)

Duration 207.82 184.65 23.17**

(2.00)

Energy 0.63 0.29 0.34***

(9.67)

Instrumentalness 0.01 0.00 0.01

(0.60)

Liveness 0.18 0.19 -0.01

(-0.45)

Loudness -6.38 -9.68 3.31***

(6.37)

Speechiness 0.16 0.16 0.00

(0.01)

Tempo 124.22 112.95 11.27*

(1.65)

Valence 0.44 0.42 0.02

(0.40)

Consumer Surplus 3.37 3.93 -0.56***

(-6.35)

Note: T-statistics in parentheses;
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 19: Counterfactual Song Characteristics and Consumer Surplus - Oracular Recom-

mendations

The oracular recommender system surfaces more acoustic, more danceable, and less energetic than the

simulated streaming sessions.

Supplemental Tables
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Characteristic Description
Acousticness A confidence measure from 0.0 to 1.0 of whether the

track is acoustic. 1.0 represents high confidence the

track is acoustic.

Danceability Danceability describes how suitable a track is for danc-

ing based on a combination of musical elements in-

cluding tempo, rhythm stability, beat strength, and

overall regularity. A value of 0.0 is least danceable and

1.0 is most danceable.

Energy Energy is a measure from 0.0 to 1.0 and represents a

perceptual measure of intensity and activity. Typically,

energetic tracks feel fast, loud, and noisy. For exam-

ple, death metal has high energy, while a Bach prelude

scores low on the scale. Perceptual features contribut-

ing to this attribute include dynamic range, perceived

loudness, timbre, onset rate, and general entropy.

Instrumentalness Predicts whether a track contains no vocals. “Ooh”

and “aah” sounds are treated as instrumental in this

context. Rap or spoken word tracks are clearly “vo-

cal”. The closer the instrumentalness value is to 1.0,

the greater likelihood the track contains no vocal con-

tent. Values above 0.5 are intended to represent instru-

mental tracks, but confidence is higher as the value

approaches 1.0.

Liveness Detects the presence of an audience in the recording.

Higher liveness values represent an increased proba-

bility that the track was performed live. A value above

0.8 provides strong likelihood that the track is live.

Speechiness Speechiness detects the presence of spoken words in a

track. The more exclusively speech-like the recording

(e.g. talk show, audiobook, poetry), the closer to 1.0 the

attribute value. Values above 0.66 describe tracks that

are probably made entirely of spoken words. Values

between 0.33 and 0.66 describe tracks that may contain

both music and speech, either in sections or layered,

including such cases as rap music. Values below 0.33

most likely represent music and other non-speech-like

tracks.

Valence A measure from 0.0 to 1.0 describing the musical posi-

tiveness conveyed by a track. Tracks with high valence

sound more positive (e.g. happy, cheerful, euphoric),

while tracks with low valence sound more negative

(e.g. sad, depressed, angry).

Table 20: Descriptions of Song Characteristics
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Estimate Odds Ratio

(Robust Std. Error)

Age -0.0161*** 0.998

(0.00047)

Acousticness 0.0581*** 0.680

(0.000601)

Acousticness² -0.043*** –

(0.000101)

Danceability -0.00696*** 0.966

(0.00108)

Danceability² -0.00107** –

(0.000442)

Duration 0.00991*** 1.000

(0.000821)

Duration² -0.000538*** –

(0.0000838)

Energy -0.0104*** 1.856

(0.00126)

Energy² 0.0608*** –

(0.000371)

Instrumentalness -0.00516*** 0.722

(0.000495)

Instrumentalness² -0.00960*** –

(0.0000438)

Liveness 0.0107*** 0.844

(0.000512)

Liveness² -0.00635*** –

(0.0000626)

Loudness 0.00734*** 1.001

(0.000988)

Loudness² -0.00802*** –

(0.0000992)

Mode 0.0332*** 1.034

(0.000965)

Speechiness -0.00594*** 0.544

(0.00049)

Speechiness² -0.0104*** –

(0.0000562)

Tempo -0.00264*** 1.000

(0.000891)

Tempo² -0.00168*** –

(0.000441)

Time Signature 0.0334*** 1.034

(0.00305)

Valence 0.0272*** 0.596

(0.000714)

Valence² -0.0566*** –

(0.000239)

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 21: Full Sample Consumer Demand Estimates - Song Characteristics
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Estimate Odds Ratio

(Robust Std. Error)

Time of Day
Morning 0.139*** 1.149

(0.00129)

Afternoon 0.110*** 1.116

(0.00116)

Night 0.0526*** 1.054

(0.00182)

Day of Week
Tuesday 0.00859*** 1.009

(0.00170)

Wednesday 0.0118*** 1.012

(0.00174)

Thursday 0.0039** 1.004

(0.00173)

Friday -0.00988*** 0.990

(0.00169)

Saturday -0.0163*** 0.984

(0.00176)

Sunday -0.0159*** 0.984

(0.00175)

User Characteristics
Premium -0.0708*** 0.932

(0.00134)

Notes:
*** p<0.01, ** p<0.05, * p<0.1

Table 22: Full Sample Consumer Demand Estimates - Contextual Characteristics
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